## Timothy J Kieffer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9359031/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells.<br>Nature Biotechnology, 2014, 32, 1121-1133.                                                                                      | 17.5 | 1,253     |
| 2  | Dietary Fructose Reduces Circulating Insulin and Leptin, Attenuates Postprandial Suppression of<br>Ghrelin, and Increases Triglycerides in Women. Journal of Clinical Endocrinology and Metabolism,<br>2004, 89, 2963-2972.              | 3.6  | 586       |
| 3  | Clonal identification of multipotent precursors from adult mouse pancreas that generate neural and pancreatic lineages. Nature Biotechnology, 2004, 22, 1115-1124.                                                                       | 17.5 | 527       |
| 4  | Maturation of Human Embryonic Stem Cell–Derived Pancreatic Progenitors Into Functional Islets<br>Capable of Treating Pre-existing Diabetes in Mice. Diabetes, 2012, 61, 2016-2029.                                                       | 0.6  | 493       |
| 5  | Hyperinsulinemia Drives Diet-Induced Obesity Independently of Brain Insulin Production. Cell<br>Metabolism, 2012, 16, 723-737.                                                                                                           | 16.2 | 420       |
| 6  | The adipoinsular axis: effects of leptin on pancreatic β-cells. American Journal of Physiology -<br>Endocrinology and Metabolism, 2000, 278, E1-E14.                                                                                     | 3.5  | 335       |
| 7  | Leptin Receptors Expressed on Pancreatic β-Cells. Biochemical and Biophysical Research<br>Communications, 1996, 224, 522-527.                                                                                                            | 2.1  | 311       |
| 8  | Glucose-Dependent Insulin Release from Genetically Engineered K Cells. Science, 2000, 290, 1959-1962.                                                                                                                                    | 12.6 | 268       |
| 9  | Ghrelin, Peptide YY, Glucose-Dependent Insulinotropic Polypeptide, and Hunger Responses to a Mixed<br>Meal in Anorexic, Obese, and Control Female Adolescents. Journal of Clinical Endocrinology and<br>Metabolism, 2005, 90, 2161-2168. | 3.6  | 239       |
| 10 | Enrichment of human embryonic stem cell-derived NKX6.1-expressing pancreatic progenitor cells accelerates the maturation of insulin-secreting cells in vivo. Stem Cells, 2013, 31, 2432-2442.                                            | 3.2  | 233       |
| 11 | Leptin Suppression of Insulin Secretion and Gene Expression in Human Pancreatic Islets: Implications<br>for the Development of Adipogenic Diabetes Mellitus1. Journal of Clinical Endocrinology and<br>Metabolism, 1999, 84, 670-676.    | 3.6  | 227       |
| 12 | Functional GIP Receptors Are Present on Adipocytes. Endocrinology, 1998, 139, 4004-4007.                                                                                                                                                 | 2.8  | 202       |
| 13 | Production of Functional Glucagon-Secreting α-Cells From Human Embryonic Stem Cells. Diabetes, 2011, 60, 239-247.                                                                                                                        | 0.6  | 183       |
| 14 | Maturation and function of human embryonic stem cell-derived pancreatic progenitors in macroencapsulation devices following transplant into mice. Diabetologia, 2013, 56, 1987-1998.                                                     | 6.3  | 177       |
| 15 | Circulating miR-375 as a Biomarker of β-Cell Death and Diabetes in Mice. Endocrinology, 2013, 154, 603-608.                                                                                                                              | 2.8  | 167       |
| 16 | Incretin release from gut is acutely enhanced by sugar but not by sweeteners in vivo. American Journal of Physiology - Endocrinology and Metabolism, 2009, 296, E473-E479.                                                               | 3.5  | 163       |
| 17 | The pancreatic Î <sup>2</sup> cell is a key site for mediating the effects of leptin on glucose homeostasis. Cell Metabolism, 2006, 4, 291-302.                                                                                          | 16.2 | 160       |
| 18 | Reduced Insulin Production Relieves Endoplasmic Reticulum Stress and Induces Î <sup>2</sup> Cell Proliferation.<br>Cell Metabolism, 2016, 23, 179-193.                                                                                   | 16.2 | 160       |

| #  | Article                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Glucose-Dependent Insulinotropic Polypeptide Is Expressed in Adult Hippocampus and Induces<br>Progenitor Cell Proliferation. Journal of Neuroscience, 2005, 25, 1816-1825.                                                       | 3.6  | 151       |
| 20 | Implanted pluripotent stem-cell-derived pancreatic endoderm cells secrete glucose-responsive<br>C-peptide in patients with type 1 diabetes. Cell Stem Cell, 2021, 28, 2047-2061.e5.                                              | 11.1 | 149       |
| 21 | Immunohistochemical characterisation of cells co-producing insulin and glucagon in the developing human pancreas. Diabetologia, 2012, 55, 372-381.                                                                               | 6.3  | 146       |
| 22 | Glucagon-Like Peptide-1: Glucose Homeostasis and Beyond. Annual Review of Physiology, 2014, 76, 535-559.                                                                                                                         | 13.1 | 140       |
| 23 | The glucoregulatory actions of leptin. Molecular Metabolism, 2017, 6, 1052-1065.                                                                                                                                                 | 6.5  | 134       |
| 24 | Characterization of polyhormonal insulin-producing cells derived in vitro from human embryonic stem cells. Stem Cell Research, 2014, 12, 194-208.                                                                                | 0.7  | 133       |
| 25 | Glucose-Dependent Insulinotropic Polypeptide Is Expressed in Pancreatic Islet α-Cells and Promotes<br>Insulin Secretion. Gastroenterology, 2010, 138, 1966-1975.e1.                                                              | 1.3  | 131       |
| 26 | Targeting the glucagon receptor family for diabetes and obesity therapy. , 2012, 135, 247-278.                                                                                                                                   |      | 129       |
| 27 | The role of leptin in glucose homeostasis. Journal of Diabetes Investigation, 2012, 3, 115-129.                                                                                                                                  | 2.4  | 113       |
| 28 | Profiling of circulating microRNAs in children with recent onset of type 1 diabetes. JCI Insight, 2017, 2, e89656.                                                                                                               | 5.0  | 97        |
| 29 | Leptin Therapy Reverses Hyperglycemia in Mice With Streptozotocin-Induced Diabetes, Independent of<br>Hepatic Leptin Signaling. Diabetes, 2011, 60, 1414-1423.                                                                   | 0.6  | 96        |
| 30 | Improving function and survival of pancreatic islets by endogenous production of glucagon-like<br>peptide 1 (GLP-1). Proceedings of the National Academy of Sciences of the United States of America,<br>2006, 103, 13468-13473. | 7.1  | 92        |
| 31 | Prevention of murine autoimmune diabetes by CCL22-mediated Treg recruitment to the pancreatic islets. Journal of Clinical Investigation, 2011, 121, 3024-3028.                                                                   | 8.2  | 90        |
| 32 | A GIP Receptor Agonist Exhibits β-Cell Anti-Apoptotic Actions in Rat Models of Diabetes Resulting in<br>Improved β-Cell Function and Glycemic Control. PLoS ONE, 2010, 5, e9590.                                                 | 2.5  | 83        |
| 33 | New aspects of an old drug: metformin as a glucagon-like peptide 1 (GLP-1) enhancer and sensitiser.<br>Diabetologia, 2011, 54, 219-222.                                                                                          | 6.3  | 83        |
| 34 | Pleiotropic Effects of GIP on Islet Function Involve Osteopontin. Diabetes, 2011, 60, 2424-2433.                                                                                                                                 | 0.6  | 83        |
| 35 | Glucose-Dependent Insulinotropic Polypeptide Confers Early Phase Insulin Release to Oral Glucose in<br>Rats: Demonstration by a Receptor Antagonist1. Endocrinology, 2000, 141, 3710-3716.                                       | 2.8  | 81        |
| 36 | Inhibition of Preproinsulin Gene Expression by Leptin Induction of Suppressor of Cytokine Signaling 3 in Pancreatic Â-Cells. Diabetes, 2005, 54, 3410-3417.                                                                      | 0.6  | 80        |

| #  | Article                                                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Tissue-Specific Effects of Leptin on Glucose and Lipid Metabolism. Endocrine Reviews, 2021, 42, 1-28.                                                                                                                                                     | 20.1 | 78        |
| 38 | Hyperinsulinemia Precedes Insulin Resistance in Mice Lacking Pancreatic β-Cell Leptin Signaling.<br>Endocrinology, 2010, 151, 4178-4186.                                                                                                                  | 2.8  | 77        |
| 39 | Navigating Two Roads to Clucose Normalization in Diabetes: Automated Insulin Delivery Devices and<br>Cell Therapy. Cell Metabolism, 2019, 29, 545-563.                                                                                                    | 16.2 | 77        |
| 40 | Activation of the Parasympathetic Nervous System Is Necessary for Normal Meal-Induced Insulin<br>Secretion in Rhesus Macaques1. Journal of Clinical Endocrinology and Metabolism, 2001, 86, 1253-1259.                                                    | 3.6  | 76        |
| 41 | Link Between GIP and Osteopontin in Adipose Tissue and Insulin Resistance. Diabetes, 2013, 62, 2088-2094.                                                                                                                                                 | 0.6  | 75        |
| 42 | K-cells and Glucose-Dependent Insulinotropic Polypeptide in Health and Disease. Vitamins and Hormones, 2010, 84, 111-150.                                                                                                                                 | 1.7  | 74        |
| 43 | Regenerative medicine and cell-based approaches to restore pancreatic function. Nature Reviews<br>Gastroenterology and Hepatology, 2017, 14, 612-628.                                                                                                     | 17.8 | 72        |
| 44 | Glucagon-Like Peptide-1, But Not Glucose-Dependent Insulinotropic Peptide, Regulates Fasting Glycemia and Nonenteral Glucose Clearance in Mice*. Endocrinology, 2000, 141, 3703-3709.                                                                     | 2.8  | 71        |
| 45 | Longâ€ŧerm, calorieâ€restricted intake of a highâ€fat diet in rats reduces impulse control and ventral<br>striatal D <sub>2</sub> receptor signalling – two markers of addiction vulnerability. European<br>Journal of Neuroscience, 2015, 42, 3095-3104. | 2.6  | 71        |
| 46 | Insulin and Glucagon: Partners for Life. Endocrinology, 2017, 158, 696-701.                                                                                                                                                                               | 2.8  | 71        |
| 47 | T regulatory cell chemokine production mediates pathogenic T cell attraction and suppression.<br>Journal of Clinical Investigation, 2016, 126, 1039-1051.                                                                                                 | 8.2  | 71        |
| 48 | Effects of dipeptidyl peptidase IV on the satiety actions of peptide YY. Diabetologia, 2006, 49, 1915-1923.                                                                                                                                               | 6.3  | 70        |
| 49 | Accelerated Maturation of Human Stem Cell-Derived Pancreatic Progenitor Cells into<br>Insulin-Secreting Cells in Immunodeficient Rats Relative to Mice. Stem Cell Reports, 2015, 5, 1081-1096.                                                            | 4.8  | 65        |
| 50 | Maintenance of β-Cell Maturity and Plasticity in the Adult Pancreas. Diabetes, 2012, 61, 1365-1371.                                                                                                                                                       | 0.6  | 64        |
| 51 | Cardiac ryanodine receptors control heart rate and rhythmicity in adult mice. Cardiovascular<br>Research, 2012, 96, 372-380.                                                                                                                              | 3.8  | 64        |
| 52 | Treating Diet-Induced Diabetes and Obesity with Human Embryonic Stem Cell-Derived Pancreatic<br>Progenitor Cells and Antidiabetic Drugs. Stem Cell Reports, 2015, 4, 605-620.                                                                             | 4.8  | 64        |
| 53 | A Switch From Prohormone Convertase (PC)-2 to PC1/3 Expression in Transplanted α-Cells Is<br>Accompanied by Differential Processing of Proglucagon and Improved Glucose Homeostasis in Mice.<br>Diabetes, 2007, 56, 2744-2752.                            | 0.6  | 63        |
| 54 | FGF21-Mediated Improvements in Glucose Clearance Require Uncoupling Protein 1. Cell Reports, 2015, 13, 1521-1527.                                                                                                                                         | 6.4  | 63        |

| #  | Article                                                                                                                                                                                                                                                                                                                                       | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Disruption of Hepatic Leptin Signaling Protects Mice From Age- and Diet-Related Glucose Intolerance.<br>Diabetes, 2010, 59, 3032-3040.                                                                                                                                                                                                        | 0.6  | 61        |
| 56 | A role for hepatic leptin signaling in lipid metabolism via altered very low density lipoprotein composition and liver lipase activity in mice. Hepatology, 2013, 57, 543-554.                                                                                                                                                                | 7.3  | 61        |
| 57 | Sesterterpenoids Isolated from a Northeastern Pacific <i>Phorbas</i> sp Journal of Organic Chemistry, 2013, 78, 8267-8273.                                                                                                                                                                                                                    | 3.2  | 60        |
| 58 | Pancreatic cell immobilization in alginate beads produced by emulsion and internal gelation.<br>Biotechnology and Bioengineering, 2011, 108, 424-434.                                                                                                                                                                                         | 3.3  | 59        |
| 59 | Initial Cell Seeding Density Influences Pancreatic Endocrine Development During in vitro<br>Differentiation of Human Embryonic Stem Cells. PLoS ONE, 2013, 8, e82076.                                                                                                                                                                         | 2.5  | 57        |
| 60 | Point Mutations in the First and Third Intracellular Loops of the Glucagon-like Peptide-1 Receptor<br>Alter Intracellular Signaling. Biochemical and Biophysical Research Communications, 1996, 223,<br>624-632.                                                                                                                              | 2.1  | 54        |
| 61 | Alotaketals A and B, Sesterterpenoids from the Marine Sponge <i>Hamigera</i> Species that Activate the cAMP Cell Signaling Pathway. Organic Letters, 2009, 11, 5166-5169.                                                                                                                                                                     | 4.6  | 54        |
| 62 | Leptin Increases Hepatic Insulin Sensitivity and Protein Tyrosine Phosphatase 1B Expression. Molecular<br>Endocrinology, 2004, 18, 1333-1345.                                                                                                                                                                                                 | 3.7  | 52        |
| 63 | GIP or not GIP? That is the question. Trends in Pharmacological Sciences, 2003, 24, 110-112.                                                                                                                                                                                                                                                  | 8.7  | 49        |
| 64 | Novel Alternatively Spliced Exon in the Extracellular Ligand-binding Domain of the Pituitary Adenylate<br>Cyclase-activating Polypeptide (PACAP) Type 1 Receptor (PAC1R) Selectively Increases Ligand Affinity and<br>Alters Signal Transduction Coupling during Spermatogenesis. Journal of Biological Chemistry, 2001,<br>276, 12938-12944. | 3.4  | 48        |
| 65 | Differential processing of pro-glucose-dependent insulinotropic polypeptide in gut. American Journal of Physiology - Renal Physiology, 2010, 298, G608-G614.                                                                                                                                                                                  | 3.4  | 46        |
| 66 | Ansellone A, a Sesterterpenoid Isolated from the Nudibranch <i>Cadlina luteromarginata</i> and the Sponge <i>Phorbas</i> sp., Activates the cAMP Signaling Pathway. Organic Letters, 2010, 12, 3208-3211.                                                                                                                                     | 4.6  | 46        |
| 67 | The enteroinsular axis in dipeptidyl peptidase IV-negative rats. Metabolism: Clinical and Experimental, 1996, 45, 1335-1341.                                                                                                                                                                                                                  | 3.4  | 45        |
| 68 | Sex Differences in Maturation of Human Embryonic Stem Cell–Derived β Cells in Mice. Endocrinology, 2018, 159, 1827-1841.                                                                                                                                                                                                                      | 2.8  | 44        |
| 69 | Glucose-Dependent Insulinotropic Polypeptide Stimulates Osteopontin Expression in the Vasculature via Endothelin-1 and CREB. Diabetes, 2016, 65, 239-254.                                                                                                                                                                                     | 0.6  | 41        |
| 70 | Clinical Application of Glucagon-Like Peptide 1 Receptor Agonists for the Treatment of Type 2 Diabetes<br>Mellitus. Endocrinology and Metabolism, 2013, 28, 262.                                                                                                                                                                              | 3.0  | 40        |
| 71 | Differentiation of human pluripotent stem cells into β-cells: Potential and challenges. Best Practice and Research in Clinical Endocrinology and Metabolism, 2015, 29, 833-847.                                                                                                                                                               | 4.7  | 40        |
| 72 | Replacing and safeguarding pancreatic $\hat{l}^2$ cells for diabetes. Science Translational Medicine, 2015, 7, 316ps23.                                                                                                                                                                                                                       | 12.4 | 39        |

| #  | Article                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Gastro-intestinal hormones GIP and GLP-1. Annales D'Endocrinologie, 2004, 65, 13-21.                                                                                                                              | 1.4  | 38        |
| 74 | Metabolic effects of chronic obestatin infusion in rats. Peptides, 2008, 29, 1354-1361.                                                                                                                           | 2.4  | 38        |
| 75 | Acute Disruption of Leptin Signaling in Vivo Leads to Increased Insulin Levels and Insulin Resistance.<br>Endocrinology, 2011, 152, 3385-3395.                                                                    | 2.8  | 37        |
| 76 | Revisiting Proinsulin Processing: Evidence That Human β-Cells Process Proinsulin With Prohormone<br>Convertase (PC) 1/3 but Not PC2. Diabetes, 2020, 69, 1451-1462.                                               | 0.6  | 37        |
| 77 | Harnessing the gut to treat diabetes. Pediatric Diabetes, 2004, 5, 57-69.                                                                                                                                         | 2.9  | 36        |
| 78 | Implanted islets in the anterior chamber of the eye are prone to autoimmune attack in a mouse model of diabetes. Diabetologia, 2013, 56, 2213-2221.                                                               | 6.3  | 36        |
| 79 | Dual role of interleukinâ€1β in islet amyloid formation and its βâ€cell toxicity: <scp>I</scp> mplications for<br>type 2 diabetes and islet transplantation. Diabetes, Obesity and Metabolism, 2017, 19, 682-694. | 4.4  | 36        |
| 80 | Closing in on Mass Production of Mature Human Beta Cells. Cell Stem Cell, 2016, 18, 699-702.                                                                                                                      | 11.1 | 35        |
| 81 | Mining incretin hormone pathways for novel therapies. Trends in Endocrinology and Metabolism, 2009, 20, 280-286.                                                                                                  | 7.1  | 34        |
| 82 | Glucose-Dependent Insulinotropic Polypeptide Confers Early Phase Insulin Release to Oral Glucose in<br>Rats: Demonstration by a Receptor Antagonist. Endocrinology, 2000, 141, 3710-3716.                         | 2.8  | 33        |
| 83 | The Role of ARX in Human Pancreatic Endocrine Specification. PLoS ONE, 2015, 10, e0144100.                                                                                                                        | 2.5  | 32        |
| 84 | Characterization of Antibodies to Products of Proinsulin Processing Using Immunofluorescence<br>Staining of Pancreas in Multiple Species. Journal of Histochemistry and Cytochemistry, 2015, 63,<br>646-662.      | 2.5  | 32        |
| 85 | Ontogeny of Ghrelin, Obestatin, Preproghrelin, and Prohormone Convertases in Rat Pancreas and<br>Stomach. Pediatric Research, 2009, 65, 39-44.                                                                    | 2.3  | 31        |
| 86 | In Vivo Expression of HGF/NK1 and GLP-1 From dsAAV Vectors Enhances Pancreatic β-Cell Proliferation and Improves Pathology in the <i>db/db</i> Mouse Model of Diabetes. Diabetes, 2010, 59, 3108-3116.            | 0.6  | 31        |
| 87 | Hypothyroidism Impairs Human Stem Cell–Derived Pancreatic Progenitor Cell Maturation in Mice.<br>Diabetes, 2016, 65, 1297-1309.                                                                                   | 0.6  | 31        |
| 88 | Dipeptidyl peptidase-4 inhibitor treatment induces a greater increase in plasma levels of bioactive GIP<br>than GLP-1 in non-diabetic subjects. Molecular Metabolism, 2017, 6, 226-231.                           | 6.5  | 31        |
| 89 | Suppressing hyperinsulinemia prevents obesity but causes rapid onset of diabetes in leptin-deficient<br>Lepob/ob mice. Molecular Metabolism, 2016, 5, 1103-1112.                                                  | 6.5  | 30        |
| 90 | Beta ell replacement strategies for diabetes. Journal of Diabetes Investigation, 2018, 9, 457-463.                                                                                                                | 2.4  | 30        |

| #   | Article                                                                                                                                                                                                                                                | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Leptin Deficiency in Rats Results in Hyperinsulinemia and Impaired Glucose Homeostasis.<br>Endocrinology, 2014, 155, 1268-1279.                                                                                                                        | 2.8 | 29        |
| 92  | Specific loss of adipocyte CD248 improves metabolic health via reduced white adipose tissue hypoxia, fibrosis and inflammation. EBioMedicine, 2019, 44, 489-501.                                                                                       | 6.1 | 29        |
| 93  | Glucagon-Like Peptide-1, But Not Glucose-Dependent Insulinotropic Peptide, Regulates Fasting Glycemia<br>and Nonenteral Glucose Clearance in Mice. Endocrinology, 2000, 141, 3703-3709.                                                                | 2.8 | 28        |
| 94  | Glucagon receptor gene deletion in insulin knockout mice modestly reduces blood glucose and ketones but does not promote survival. Molecular Metabolism, 2016, 5, 731-736.                                                                             | 6.5 | 27        |
| 95  | Leptin induces fasting hypoglycaemia in a mouse model of diabetes through the depletion of glycerol.<br>Diabetologia, 2015, 58, 1100-1108.                                                                                                             | 6.3 | 25        |
| 96  | Amyloid formation disrupts the balance between interleukin-1β and interleukin-1 receptor antagonist in human islets. Molecular Metabolism, 2017, 6, 833-844.                                                                                           | 6.5 | 25        |
| 97  | Overexpression of PAX4 reduces glucagon expression in differentiating hESCs. Islets, 2014, 6, e29236.                                                                                                                                                  | 1.8 | 24        |
| 98  | Human Pluripotent Stem Cells to Model Islet Defects in Diabetes. Frontiers in Endocrinology, 2021, 12,<br>642152.                                                                                                                                      | 3.5 | 24        |
| 99  | IGFBP2 Is Neither Sufficient nor Necessary for the Physiological Actions of Leptin on Glucose<br>Homeostasis in Male ob/ob Mice. Endocrinology, 2014, 155, 716-725.                                                                                    | 2.8 | 21        |
| 100 | Pancreatic glucose-dependent insulinotropic polypeptide (GIP) (1–30) expression is upregulated in<br>diabetes and PEGylated GIP(1–30) can suppress the progression of low-dose-STZ-induced<br>hyperglycaemia in mice. Diabetologia, 2016, 59, 533-541. | 6.3 | 21        |
| 101 | Insulin Knockout Mice Have Extended Survival but Volatile Blood Glucose Levels on Leptin Therapy.<br>Endocrinology, 2016, 157, 1007-1012.                                                                                                              | 2.8 | 21        |
| 102 | Attenuated secretion of glucose-dependent insulinotropic polypeptide (GIP) does not alleviate<br>hyperphagic obesity and insulin resistance in ob/ob mice. Molecular Metabolism, 2017, 6, 288-294.                                                     | 6.5 | 21        |
| 103 | Lipid nanoparticle delivery of glucagon receptor siRNA improves glucose homeostasis in mouse models of diabetes. Molecular Metabolism, 2017, 6, 1161-1172.                                                                                             | 6.5 | 20        |
| 104 | Restoring insulin production for type 1 diabetes. Journal of Diabetes, 2012, 4, 319-331.                                                                                                                                                               | 1.8 | 17        |
| 105 | Metabolic effects of leptin receptor knockdown or reconstitution in adipose tissues. Scientific Reports, 2019, 9, 3307.                                                                                                                                | 3.3 | 17        |
| 106 | Early overnutrition reduces Pdx1 expression and induces $\hat{I}^2$ cell failure in Swiss Webster mice. Scientific Reports, 2019, 9, 3619.                                                                                                             | 3.3 | 17        |
| 107 | Partial ablation of leptin signaling in mouse pancreatic α-cells does not alter either glucose or lipid<br>homeostasis. American Journal of Physiology - Endocrinology and Metabolism, 2014, 306, E748-E755.                                           | 3.5 | 16        |
| 108 | Vegfa/vegfr2 signaling is necessary for zebrafish islet vessel development, but is dispensable for<br>beta-cell and alpha-cell formation. Scientific Reports, 2019, 9, 3594.                                                                           | 3.3 | 16        |

| #   | Article                                                                                                                                                                                                              | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Treatment of diabetes by transplantation of drug-inducible insulin-producing gut cells. Journal of<br>Molecular Medicine, 2009, 87, 703-712.                                                                         | 3.9  | 15        |
| 110 | Cellular reprogramming of human amniotic fluid cells to express insulin. Differentiation, 2010, 80, 130-139.                                                                                                         | 1.9  | 15        |
| 111 | The role of autonomic efferents and uncoupling protein 1 in the glucose-lowering effect of leptin therapy. Molecular Metabolism, 2016, 5, 716-724.                                                                   | 6.5  | 15        |
| 112 | Statistical approaches and software for clustering islet cell functional heterogeneity. Islets, 2016, 8, 48-56.                                                                                                      | 1.8  | 15        |
| 113 | Altered islet prohormone processing: a cause or consequence of diabetes?. Physiological Reviews, 2022, 102, 155-208.                                                                                                 | 28.8 | 15        |
| 114 | Leptin Administration Enhances Islet Transplant Performance in Diabetic Mice. Diabetes, 2013, 62, 2738-2746.                                                                                                         | 0.6  | 14        |
| 115 | Disrupted Leptin Signaling in the Lateral Hypothalamus and Ventral Premammillary Nucleus Alters<br>Insulin and Glucagon Secretion and Protects Against Diet-Induced Obesity. Endocrinology, 2016, 157,<br>2671-2685. | 2.8  | 14        |
| 116 | SNAP23 depletion enables more SNAP25/calcium channel excitosome formation to increase insulin exocytosis in type 2 diabetes. JCI Insight, 2020, 5, .                                                                 | 5.0  | 14        |
| 117 | Process Analytical Utility of Raman Microspectroscopy in the Directed Differentiation of Human<br>Pancreatic Insulin-Positive Cells. Analytical Chemistry, 2015, 87, 10762-10769.                                    | 6.5  | 13        |
| 118 | AAV8 Ins1-Cre can produce efficient $\hat{l}^2$ -cell recombination but requires consideration of off-target effects. Scientific Reports, 2020, 10, 10518.                                                           | 3.3  | 13        |
| 119 | Heparanase Overexpression Induces Glucagon Resistance and Protects Animals From Chemically<br>Induced Diabetes. Diabetes, 2017, 66, 45-57.                                                                           | 0.6  | 12        |
| 120 | Impaired Ca2+ Signaling in β-Cells Lacking Leptin Receptors by Cre-loxP Recombination. PLoS ONE, 2013, 8, e71075.                                                                                                    | 2.5  | 12        |
| 121 | Treatment of diabetes with glucagon-like peptide-1 gene therapy. Expert Opinion on Biological Therapy, 2010, 10, 1681-1692.                                                                                          | 3.1  | 11        |
| 122 | Developmental Timing of High-Fat Diet Exposure Impacts Glucose Homeostasis in Mice in a Sex-Specific<br>Manner. Diabetes, 2021, 70, 2771-2784.                                                                       | 0.6  | 11        |
| 123 | Treatment of Obesity and Diabetes in Mice by Transplant of Gut Cells Engineered to Produce Leptin.<br>Molecular Therapy, 2008, 16, 1138-1145.                                                                        | 8.2  | 10        |
| 124 | Glucose decreases extracellular adenosine levels in isolated mouse and rat pancreatic islets. Islets, 2012, 4, 64-70.                                                                                                | 1.8  | 10        |
| 125 | Deletion of pancreas-specific miR-216a reduces beta-cell mass and inhibits pancreatic cancer progression in mice. Cell Reports Medicine, 2021, 2, 100434.                                                            | 6.5  | 10        |
| 126 | A human embryonic stem cell line adapted for high throughput screening. Biotechnology and Bioengineering, 2013, 110, 2706-2716.                                                                                      | 3.3  | 9         |

| #   | Article                                                                                                                                                                                                                  | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Insulin-Producing Intestinal K Cells Protect Nonobese Diabetic Mice From Autoimmune Diabetes.<br>Gastroenterology, 2014, 147, 162-171.e6.                                                                                | 1.3 | 8         |
| 128 | Altering the intra-liver distribution of phospholipid-free small unilamellar vesicles using temperature-dependent size-tunability. Journal of Controlled Release, 2021, 333, 151-161.                                    | 9.9 | 8         |
| 129 | Engineering the gut for insulin replacement to treat diabetes. Journal of Diabetes Investigation, 2016, 7, 87-93.                                                                                                        | 2.4 | 7         |
| 130 | AAV GCG-EGFP, a new tool to identify glucagon-secreting α-cells. Scientific Reports, 2019, 9, 10829.                                                                                                                     | 3.3 | 6         |
| 131 | Glucoseâ€dependent insulinotropic polypeptide deficiency reduced fat accumulation and insulin<br>resistance, but deteriorated bone loss in ovariectomized mice. Journal of Diabetes Investigation, 2019,<br>10, 909-914. | 2.4 | 5         |
| 132 | Process Parameter Development for the Scaled Generation of Stem Cell-Derived Pancreatic Endocrine<br>Cells. Stem Cells Translational Medicine, 2021, 10, 1459-1469.                                                      | 3.3 | 5         |
| 133 | Restoration of Lepr in β cells of Lepr null mice does not prevent hyperinsulinemia and hyperglycemia.<br>Molecular Metabolism, 2017, 6, 585-593.                                                                         | 6.5 | 4         |
| 134 | Glucose-Dependent Insulinotropic Polypeptide (GIP). , 1999, , 439-466.                                                                                                                                                   |     | 4         |
| 135 | Insulin-Deficient Mouse β-Cells Do Not Fully Mature but Can Be Remedied Through Insulin Replacement<br>by Islet Transplantation. Endocrinology, 2018, 159, 83-102.                                                       | 2.8 | 3         |
| 136 | Role of myeloid cell leptin signaling in the regulation of glucose metabolism. Scientific Reports, 2021, 11, 18394.                                                                                                      | 3.3 | 3         |
| 137 | Leptin contributes to the beneficial effects of insulin treatment in streptozotocin-diabetic male mice.<br>American Journal of Physiology - Endocrinology and Metabolism, 2018, 315, E1264-E1273.                        | 3.5 | 2         |
| 138 | Early overnutrition in male mice negates metabolic benefits of a diet high in monounsaturated and omega-3 fats. Scientific Reports, 2021, 11, 14032.                                                                     | 3.3 | 2         |
| 139 | Pancreatic islets in bed with microvasculature—companions for life. Cell Reports Medicine, 2021, 2, 100454.                                                                                                              | 6.5 | 2         |
| 140 | Generating Pancreatic Endocrine Cells from Pluripotent Stem Cells. , 2014, , 1-37.                                                                                                                                       |     | 1         |
| 141 | 307.2: Bioprinted Immune-protective Islet-containing Tissues Successfully Regulate Blood Glucose in Rodent Models of Type 1 Diabetes. Transplantation, 2021, 105, S23-S23.                                               | 1.0 | 1         |
| 142 | Insulin null ß-cells have a prohormone processing defect that is not reversed by AAV rescue of proinsulin expression. Endocrinology, 2022, , .                                                                           | 2.8 | 1         |
| 143 | In Memoriam—John C. Brown, PhD, DSc, FRSC, 1938–2016: Discoverer of GIP and Motilin.<br>Gastroenterology, 2017, 153, 1169-1171.                                                                                          | 1.3 | 0         |
| 144 | Plasticity of glucoseâ€dependent insulinotropic polypeptide (GIP) receptor expression in the vasculature. FASEB Journal, 2011, 25, 1070.3.                                                                               | 0.5 | 0         |

| #   | Article                                                                                 | IF | CITATIONS |
|-----|-----------------------------------------------------------------------------------------|----|-----------|
| 145 | Generating Pancreatic Endocrine Cells from Pluripotent Stem Cells. , 2015, , 1335-1373. |    | 0         |