Scott K Powers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9357789/publications.pdf Version: 2024-02-01

	11235	10129
22,498	73	145
citations	h-index	g-index
217	217	20022
217	217	28023
docs citations	times ranked	citing authors
	citations 217	22,498 73 citations h-index 217 217

#	Article	IF	CITATIONS
1	Activation of Calpain Contributes to Mechanical Ventilation-Induced Depression of Protein Synthesis in Diaphragm Muscle. Cells, 2022, 11, 1028.	1.8	4
2	Redox signaling regulates skeletal muscle remodeling in response to exercise and prolonged inactivity. Redox Biology, 2022, 54, 102374.	3.9	17
3	Calpains play an essential role in mechanical ventilation-induced diaphragmatic weakness and mitochondrial dysfunction. Redox Biology, 2021, 38, 101802.	3.9	22
4	Comparative Efficacy of Angiotensin II Type 1 Receptor Blockers Against Ventilatorâ€Induced Diaphragm Dysfunction in Rats. Clinical and Translational Science, 2021, 14, 481-486.	1.5	2
5	Advances in exercise physiology: exercise and health. Journal of Physiology, 2021, 599, 769-770.	1.3	0
6	Mitochondrial Dysfunction Is a Common Denominator Linking Skeletal Muscle Wasting Due to Disease, Aging, and Prolonged Inactivity. Antioxidants, 2021, 10, 588.	2.2	37
7	Angiotensin 1â€7 protects against ventilatorâ€induced diaphragm dysfunction. Clinical and Translational Science, 2021, 14, 1512-1523.	1.5	3
8	Hydrogen sulfide donor protects against mechanical ventilationâ€induced atrophy and contractile dysfunction in the rat diaphragm. Clinical and Translational Science, 2021, 14, 2139-2145.	1.5	7
9	Alterations in renin-angiotensin receptors are not responsible for exercise preconditioning of skeletal muscle fibers. Sports Medicine and Health Science, 2021, 3, 148-156.	0.7	0
10	The Role of Calpains in Skeletal Muscle Remodeling with Exercise and Inactivity-induced Atrophy. International Journal of Sports Medicine, 2020, 41, 994-1008.	0.8	40
11	Human and Rodent Skeletal Muscles Express Angiotensin II Type 1 Receptors. Cells, 2020, 9, 1688.	1.8	6
12	Exercise-induced oxidative stress: Friend or foe?. Journal of Sport and Health Science, 2020, 9, 415-425.	3.3	270
13	The COVID-19 pandemic and physical activity. Sports Medicine and Health Science, 2020, 2, 55-64.	0.7	354
14	Mechanisms of exercise-induced preconditioning in skeletal muscles. Redox Biology, 2020, 35, 101462.	3.9	22
15	Redox Control of Proteolysis During Inactivity-Induced Skeletal Muscle Atrophy. Antioxidants and Redox Signaling, 2020, 33, 559-569.	2.5	32
16	Commentary on "The tortuous path of lactate shuttle discovery: From cinders and boards to the lab and ICU― Journal of Sport and Health Science, 2020, 9, 461.	3.3	0
17	Introduction to special topic on exercise and oxidative stress. Journal of Sport and Health Science, 2020, 9, 385.	3.3	5
18	Disturbances in Calcium Homeostasis Promotes Skeletal Muscle Atrophy: Lessons From Ventilator-Induced Diaphragm Wasting. Frontiers in Physiology, 2020, 11, 615351.	1.3	11

#	Article	IF	CITATIONS
19	Effects of exercise preconditioning and HSP72 on diaphragm muscle function during mechanical ventilation. Journal of Cachexia, Sarcopenia and Muscle, 2019, 10, 767-781.	2.9	24
20	Increased SOD2 in the diaphragm contributes to exercise-induced protection against ventilator-induced diaphragm dysfunction. Redox Biology, 2019, 20, 402-413.	3.9	31
21	Endurance exercise protects skeletal muscle against both doxorubicin-induced and inactivity-induced muscle wasting. Pflugers Archiv European Journal of Physiology, 2019, 471, 441-453.	1.3	20
22	Mitochondrial dysfunction induces muscle atrophy during prolonged inactivity: A review of the causes and effects. Archives of Biochemistry and Biophysics, 2019, 662, 49-60.	1.4	128
23	Crosstalk between autophagy and oxidative stress regulates proteolysis in the diaphragm during mechanical ventilation. Free Radical Biology and Medicine, 2018, 115, 179-190.	1.3	83
24	The Renin-Angiotensin System and Skeletal Muscle. Exercise and Sport Sciences Reviews, 2018, 46, 205-214.	1.6	39
25	Sugar or fat: The metabolic choice of the trained heart. Metabolism: Clinical and Experimental, 2018, 87, 98-104.	1.5	27
26	TREADMILL EXERCISE TRAINING PROTECTS AGAINST METABOLIC DYSFUNCTION AND DIAPHRAGM WEAKNESS IN OBESE DIABETIC RATS. FASEB Journal, 2018, 32, 588.26.	0.2	0
27	Overview of <i>The Journal of Physiology</i> Special Issue on the â€~Biomedical basis of elite performance'. Journal of Physiology, 2017, 595, 2769-2770.	1.3	0
28	Exercise: Teaching myocytes new tricks. Journal of Applied Physiology, 2017, 123, 460-472.	1.2	17
29	Global Proteome Changes in the Rat Diaphragm Induced by Endurance Exercise Training. PLoS ONE, 2017, 12, e0171007.	1.1	29
30	Blockage of the Ryanodine Receptor via Azumolene Does Not Prevent Mechanical Ventilation-Induced Diaphragm Atrophy. PLoS ONE, 2016, 11, e0148161.	1.1	7
31	Disease-Induced Skeletal Muscle Atrophy and Fatigue. Medicine and Science in Sports and Exercise, 2016, 48, 2307-2319.	0.2	128
32	Exerciseâ€induced oxidative stress: past, present and future. Journal of Physiology, 2016, 594, 5081-5092.	1.3	232
33	Exercise and oxidative stress. Journal of Physiology, 2016, 594, 5079-5080.	1.3	15
34	Cervical spinal cord injury exacerbates ventilator-induced diaphragm dysfunction. Journal of Applied Physiology, 2016, 120, 166-177.	1.2	28
35	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
36	Redox control of skeletal muscle atrophy. Free Radical Biology and Medicine, 2016, 98, 208-217.	1.3	138

#	Article	IF	CITATIONS
37	Partial Support Ventilation and Mitochondrial-Targeted Antioxidants Protect against Ventilator-Induced Decreases in Diaphragm Muscle Protein Synthesis. PLoS ONE, 2015, 10, e0137693.	1.1	40
38	AT ₁ receptor blocker losartan protects against mechanical ventilation-induced diaphragmatic dysfunction. Journal of Applied Physiology, 2015, 119, 1033-1041.	1.2	27
39	Role of intrinsic aerobic capacity and ventilator-induced diaphragm dysfunction. Journal of Applied Physiology, 2015, 118, 849-857.	1.2	11
40	Increased mitochondrial emission of reactive oxygen species and calpain activation are required for doxorubicinâ€induced cardiac and skeletal muscle myopathy. Journal of Physiology, 2015, 593, 2017-2036.	1.3	99
41	Inhibition of Forkhead BoxO–Specific Transcription Prevents Mechanical Ventilation–Induced Diaphragm Dysfunction. Critical Care Medicine, 2015, 43, e133-e142.	0.4	32
42	Exercise Can Protect against a Broken Heart. Current Sports Medicine Reports, 2015, 14, 6-8.	0.5	2
43	Repeated exposure to heat stress results in a diaphragm phenotype that resists ventilator-induced diaphragm dysfunction. Journal of Applied Physiology, 2015, 119, 1023-1031.	1.2	13
44	Effects of Mechanical Ventilation and Autophagy on Diaphragm Oxidative Stress and Proteolysis. FASEB Journal, 2015, 29, 821.7.	0.2	0
45	Delta Opioid Receptors: The Link between Exercise and Cardioprotection. PLoS ONE, 2014, 9, e113541.	1.1	15
46	Heat stress protects against mechanical ventilation-induced diaphragmatic atrophy. Journal of Applied Physiology, 2014, 117, 518-524.	1.2	15
47	Inhibition of Janus kinase signaling during controlled mechanical ventilation prevents ventilationâ€induced diaphragm dysfunction. FASEB Journal, 2014, 28, 2790-2803.	0.2	36
48	Can Antioxidants Protect Against Disuse Muscle Atrophy?. Sports Medicine, 2014, 44, 155-165.	3.1	70
49	Positive end-expiratory airway pressure does not aggravate ventilator-induced diaphragmatic dysfunction in rabbits. Critical Care, 2014, 18, 494.	2.5	14
50	Effects of Controlled Mechanical Ventilation on Sepsis-Induced Diaphragm Dysfunction in Rats. Critical Care Medicine, 2014, 42, e772-e782.	0.4	55
51	Mechanisms of Exercise-Induced Cardioprotection. Physiology, 2014, 29, 27-38.	1.6	82
52	Effects of short-term endurance exercise training on acute doxorubicin-induced FoxO transcription in cardiac and skeletal muscle. Journal of Applied Physiology, 2014, 117, 223-230.	1.2	71
53	The effects of enalapril and losartan on mechanical ventilation–induced sympathoadrenal activation and oxidative stress in rats. Journal of Surgical Research, 2014, 188, 510-516.	0.8	11
54	Inhibition of the Ubiquitin–Proteasome Pathway Does Not Protect against Ventilator-induced Accelerated Proteolysis or Atrophy in the Diaphragm. Anesthesiology, 2014, 121, 115-126.	1.3	30

#	Article	IF	CITATIONS
55	Recovery of Diaphragm Function following Mechanical Ventilation in a Rodent Model. PLoS ONE, 2014, 9, e87460.	1.1	18
56	Immobilization-induced activation of key proteolytic systems in skeletal muscles is prevented by a mitochondria-targeted antioxidant. Journal of Applied Physiology, 2013, 115, 529-538.	1.2	114
57	Delivery of Recombinant Adeno-Associated Virus Vectors to Rat Diaphragm Muscle via Direct Intramuscular Injection. Human Gene Therapy Methods, 2013, 24, 364-371.	2.1	13
58	Impact of Exercise, Reactive Oxygen and Reactive Nitrogen Species on Tumor Growth. , 2013, , 7-20.		0
59	Ventilator-induced diaphragm dysfunction: cause and effect. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2013, 305, R464-R477.	0.9	128
60	Calpain and caspase-3 play required roles in immobilization-induced limb muscle atrophy. Journal of Applied Physiology, 2013, 114, 1482-1489.	1.2	72
61	COPD elicits remodeling of the diaphragm and vastus lateralis muscles in humans. Journal of Applied Physiology, 2013, 114, 1235-1245.	1.2	50
62	CrossTalk proposal: Mechanical ventilationâ€induced diaphragm atrophy is primarily due to inactivity. Journal of Physiology, 2013, 591, 5255-5257.	1.3	24
63	Rebuttal from Scott K. Powers, Ashley J. Smuder, David Fuller and Sanford Levine. Journal of Physiology, 2013, 591, 5263-5263.	1.3	1
64	Diaphragm and ventilatory dysfunction during cancer cachexia. FASEB Journal, 2013, 27, 2600-2610.	0.2	90
65	Negative Pressure Ventilation and Positive Pressure Ventilation Promote Comparable Levels of Ventilator-induced Diaphragmatic Dysfunction in Rats. Anesthesiology, 2013, 119, 652-662.	1.3	24
66	Effects of heat stress on mechanical ventilationâ€induced atrophy in rat diaphragm. FASEB Journal, 2013, 27, .	0.2	0
67	Mechanical ventilation impairs sarcomeric protein function in rat diaphragm single fibers. FASEB Journal, 2013, 27, 939.3.	0.2	0
68	FoxO transcription contributes to mechanical ventilationâ€induced diaphragm atrophy and contractile dysfunction. FASEB Journal, 2013, 27, 939.1.	0.2	0
69	Matrix metalloproteinaseâ€2 is not active in the diaphragm during mechanical ventilation. FASEB Journal, 2013, 27, lb779.	0.2	0
70	Exercise Protects Cardiac Mitochondria against Ischemia–Reperfusion Injury. Medicine and Science in Sports and Exercise, 2012, 44, 397-405.	0.2	77
71	Oxidative stress and disuse muscle atrophy. Current Opinion in Clinical Nutrition and Metabolic Care, 2012, 15, 240-245.	1.3	198
72	Hemodynamic and oxidative mechanisms of tourniquet-induced muscle injury: near-infrared spectroscopy for the orthopedics setting. Journal of Biomedical Optics, 2012, 17, 081408.	1.4	15

#	Article	IF	CITATIONS
73	Endurance exercise attenuates ventilator-induced diaphragm dysfunction. Journal of Applied Physiology, 2012, 112, 501-510.	1.2	65
74	Nuclear factor-κB signaling contributes to mechanical ventilation-induced diaphragm weakness*. Critical Care Medicine, 2012, 40, 927-934.	0.4	61
75	Both high level pressure support ventilation and controlled mechanical ventilation induce diaphragm dysfunction and atrophy. Critical Care Medicine, 2012, 40, 1254-1260.	0.4	151
76	Cross-talk between the calpain and caspase-3 proteolytic systems in the diaphragm during prolonged mechanical ventilation. Critical Care Medicine, 2012, 40, 1857-1863.	0.4	98
77	Mechanical ventilation reduces rat diaphragm blood flow and impairs oxygen delivery and uptake*. Critical Care Medicine, 2012, 40, 2858-2866.	0.4	53
78	Mitochondrial signaling contributes to disuse muscle atrophy. American Journal of Physiology - Endocrinology and Metabolism, 2012, 303, E31-E39.	1.8	189
79	Mechanical ventilation induces a timeâ€dependent reduction in microvascular oxygenation and vascular conductance in the diaphragm. FASEB Journal, 2012, 26, 860.20.	0.2	0
80	Increased mitochondrial ROS production is required for ventilatorâ€induced myonuclear apoptosis in the diaphragm. FASEB Journal, 2012, 26, 1075.11.	0.2	0
81	Inhibition of calpain or caspaseâ€3 protects against immobilizationâ€induced muscle atrophy. FASEB Journal, 2012, 26, 1075.7.	0.2	0
82	Administration of recombinant adenoâ€associated virus vector to the diaphragm through direct intramuscular injection. FASEB Journal, 2012, 26, 1075.21.	0.2	0
83	Mechanistic Links Between Oxidative Stress and Disuse Muscle Atrophy. Antioxidants and Redox Signaling, 2011, 15, 2519-2528.	2.5	150
84	Antioxidant and Vitamin D supplements for athletes: Sense or nonsense?. Journal of Sports Sciences, 2011, 29, S47-S55.	1.0	48
85	Reactive Oxygen Species: Impact on Skeletal Muscle. , 2011, 1, 941-969.		346
86	Mitochondria-targeted antioxidants protect against mechanical ventilation-induced diaphragm weakness*. Critical Care Medicine, 2011, 39, 1749-1759.	0.4	231
87	N-Acetylcysteine protects the rat diaphragm from the decreased contractility associated with controlled mechanical ventilation*. Critical Care Medicine, 2011, 39, 777-782.	0.4	83
88	Mechanical Ventilation-Induced Oxidative Stress in the Diaphragm. Chest, 2011, 139, 816-824.	0.4	24
89	Reactive oxygen and nitrogen species as intracellular signals in skeletal muscle. Journal of Physiology, 2011, 589, 2129-2138.	1.3	256
90	Exercise-induced oxidative stress in humans: Cause and consequences. Free Radical Biology and Medicine, 2011, 51, 942-950.	1.3	340

#	Article	IF	CITATIONS
91	Exercise protects against doxorubicin-induced markers of autophagy signaling in skeletal muscle. Journal of Applied Physiology, 2011, 111, 1190-1198.	1.2	100
92	Mitochondrial-targeted antioxidants protect skeletal muscle against immobilization-induced muscle atrophy. Journal of Applied Physiology, 2011, 111, 1459-1466.	1.2	202
93	Exercise protects against doxorubicin-induced oxidative stress and proteolysis in skeletal muscle. Journal of Applied Physiology, 2011, 110, 935-942.	1.2	102
94	Fiberâ€specific expression of alphaâ€actininâ€3 protein in rat diaphragm. FASEB Journal, 2011, 25, lb588.	0.2	0
95	Endurance exercise attenuates mechanical ventilationâ€induced diaphragm weakness. FASEB Journal, 2011, 25, 1059.20.	0.2	0
96	Caspaseâ€3 is activated by intrinsic apoptotic pathways during mechanical ventilation. FASEB Journal, 2011, 25, .	0.2	0
97	Sphingomyelinase promotes atrophy in C2C12 myotubes. FASEB Journal, 2011, 25, lb602.	0.2	1
98	Experimental Guidelines for Studies Designed to Investigate the Impact of Antioxidant Supplementation on Exercise Performance. International Journal of Sport Nutrition and Exercise Metabolism, 2010, 20, 2-14.	1.0	63
99	ARE ANTIOXIDANT SUPPLEMENTS REQUIRED FOR ACTIVE ADULTS?. ACSM's Health and Fitness Journal, 2010, 14, 11-14.	0.3	0
100	Exercise does not increase cyclooxygenase-2 myocardial levels in young or senescent hearts. Journal of Physiological Sciences, 2010, 60, 181-186.	0.9	23
101	Corticosteroid effects on ventilator-induced diaphragm dysfunction in anesthetized rats depend on the dose administered. Respiratory Research, 2010, 11, 178.	1.4	22
102	Oxidation enhances myofibrillar protein degradation via calpain and caspase-3. Free Radical Biology and Medicine, 2010, 49, 1152-1160.	1.3	165
103	Subsarcolemmal and intermyofibrillar mitochondria proteome differences disclose functional specializations in skeletal muscle. Proteomics, 2010, 10, 3142-3154.	1.3	109
104	Overexpression of antioxidant enzymes in diaphragm muscle does not alter contractionâ€induced fatigue or recovery. Experimental Physiology, 2010, 95, 222-231.	0.9	30
105	Reactive oxygen species are signalling molecules for skeletal muscle adaptation. Experimental Physiology, 2010, 95, 1-9.	0.9	322
106	Short-term exercise training protects against doxorubicin-induced cardiac mitochondrial damage independent of HSP72. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 299, H1515-H1524.	1.5	75
107	Oxidative stress is required for mechanical ventilation-induced protease activation in the diaphragm. Journal of Applied Physiology, 2010, 108, 1376-1382.	1.2	166
108	MIP/MTMR14 and muscle aging. Aging, 2010, 2, 538-538.	1.4	9

#	Article	IF	CITATIONS
109	Protective effect of methylprednisolone on ventilatorâ€induced diaphragm dysfunction is dose dependent. FASEB Journal, 2010, 24, 801.5.	0.2	0
110	Oxidative stress enhances myofibrillar protein degradation via calpain and caspaseâ€3. FASEB Journal, 2010, 24, 1046.14.	0.2	0
111	Mitochondrialâ€ŧargeted antioxidants attenuate immobilizationâ€induced skeletal muscle atrophy. FASEB Journal, 2010, 24, lb670.	0.2	1
112	Endurance exercise protects cardiac tissue from doxorubicinâ€induced proteolysis and apoptosis. FASEB Journal, 2010, 24, 619.20.	0.2	0
113	Nâ€acetylcysteine attenuates ventilatorâ€induced diaphragm dysfunction in rats. FASEB Journal, 2010, 24, 1001.10.	0.2	1
114	Calpain and caspase-3 are required for sepsis-induced diaphragmatic weakness. Journal of Applied Physiology, 2009, 107, 1369-1369.	1.2	5
115	Xanthine oxidase contributes to mechanical ventilation-induced diaphragmatic oxidative stress and contractile dysfunction. Journal of Applied Physiology, 2009, 106, 385-394.	1.2	87
116	Exercise training induces a cardioprotective phenotype and alterations in cardiac subsarcolemmal and intermyofibrillar mitochondrial proteins. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 297, H144-H152.	1.5	81
117	Mechanical ventilation induces diaphragmatic mitochondrial dysfunction and increased oxidant production. Free Radical Biology and Medicine, 2009, 46, 842-850.	1.3	185
118	Apocynin attenuates diaphragm oxidative stress and protease activation during prolonged mechanical ventilation. Critical Care Medicine, 2009, 37, 1373-1379.	0.4	78
119	Prolonged mechanical ventilation alters diaphragmatic structure and function. Critical Care Medicine, 2009, 37, S347-S353.	0.4	159
120	Exercise-induced cardioprotection against myocardial ischemia–reperfusion injury. Free Radical Biology and Medicine, 2008, 44, 193-201.	1.3	195
121	Pressure support ventilation attenuates ventilator-induced protein modifications in the diaphragm. Critical Care, 2008, 12, 191.	2.5	11
122	Exercise induces a cardiac mitochondrial phenotype that resists apoptotic stimuli. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 294, H928-H935.	1.5	130
123	Rapid Disuse Atrophy of Diaphragm Fibers in Mechanically Ventilated Humans. New England Journal of Medicine, 2008, 358, 1327-1335.	13.9	1,270
124	Exerciseâ€induced protection against myocardial apoptosis and necrosis: MnSOD, calciumâ€handling proteins, and calpain. FASEB Journal, 2008, 22, 2862-2871.	0.2	121
125	Effects of Acute Administration of Corticosteroids during Mechanical Ventilation on Rat Diaphragm. American Journal of Respiratory and Critical Care Medicine, 2008, 178, 1219-1226.	2.5	58
126	Exercise-Induced Oxidative Stress: Cellular Mechanisms and Impact on Muscle Force Production. Physiological Reviews, 2008, 88, 1243-1276.	13.1	1,784

#	Article	IF	CITATIONS
127	Testosterone administration induces protection against global myocardial ischemia. FASEB Journal, 2008, 22, 750.19.	0.2	0
128	Redox regulation of diaphragm proteolysis during mechanical ventilation. FASEB Journal, 2008, 22, 962.19.	0.2	0
129	Oxidative stress and disuse muscle atrophy. Journal of Applied Physiology, 2007, 102, 2389-2397.	1.2	401
130	Leupeptin Inhibits Ventilator-induced Diaphragm Dysfunction in Rats. American Journal of Respiratory and Critical Care Medicine, 2007, 175, 1134-1138.	2.5	94
131	Caspase-3 Regulation of Diaphragm Myonuclear Domain during Mechanical Ventilation–induced Atrophy. American Journal of Respiratory and Critical Care Medicine, 2007, 175, 150-159.	2.5	161
132	Diaphragmatic nitric oxide synthase is not induced during mechanical ventilation. Journal of Applied Physiology, 2007, 102, 157-162.	1.2	19
133	Exercise-induced HSP-72 elevation and cardioprotection against infarct and apoptosis. Journal of Applied Physiology, 2007, 103, 1056-1062.	1.2	70
134	Short-Term Exercise Does Not Increase ER Stress Protein Expression in Cardiac Muscle. Medicine and Science in Sports and Exercise, 2007, 39, 1522-1528.	0.2	27
135	Ischemia-Reperfusion-Induced Cardiac Injury. Medicine and Science in Sports and Exercise, 2007, 39, 1529-1539.	0.2	57
136	Diaphragmatic proteasome function is maintained in the ageing Fisher 344 rat. Experimental Physiology, 2007, 92, 895-901.	0.9	9
137	Infusions of rocuronium and cisatracurium exert different effects on rat diaphragm function. Intensive Care Medicine, 2007, 33, 872-879.	3.9	69
138	Effects of oxidative stress on PI3K/Akt regulation of FOXO transcription factors during diaphragm muscle disuse. FASEB Journal, 2007, 21, A1306.	0.2	1
139	Antioxidant overexpression reduces diaphragm maximal specific tension but does not alter resistance to fatigue. FASEB Journal, 2007, 21, A1306.	0.2	0
140	Overexpression of CuZnSOD or MnSOD protects satellite cells from doxorubicinâ€induced apoptosis. FASEB Journal, 2007, 21, A449.	0.2	0
141	Estrogen Administration Attenuates Immobilization-Induced Skeletal Muscle Atrophy in Male Rats. Journal of Physiological Sciences, 2006, 56, 393-399.	0.9	37
142	Rocuronium exacerbates mechanical ventilation–induced diaphragm dysfunction in rats. Critical Care Medicine, 2006, 34, 3018-3023.	0.4	97
143	Ischemia-reperfusion-induced calpain activation and SERCA2a degradation are attenuated by exercise training and calpain inhibition. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 290, H128-H136.	1.5	130
144	Heat shock protein 72 expression is not essential for exercise induced protection against infarction and apoptosis following ischemiaâ€reperfusion. FASEB Journal, 2006, 20, A318.	0.2	0

#	Article	IF	CITATIONS
145	Exercise training and calpain inhibition prevent the IRâ€induced degradation of myocardial calcium handling proteins and contractile dysfunction. FASEB Journal, 2006, 20, LB13.	0.2	0
146	Shortâ€ŧerm exercise does not affect ER stress protein expression in cardiac muscle. FASEB Journal, 2006, 20, LB27.	0.2	0
147	Apocynin attenuates mechanical ventilationâ€induced diaphragmatic oxidative stress and contractile dysfunction. FASEB Journal, 2006, 20, A1160.	0.2	0
148	Maintenance of myonuclear domain during mechanical ventilation induced diaphragmatic atrophy. FASEB Journal, 2006, 20, LB32.	0.2	0
149	Protein expression profile of the unloaded rat diaphragm by twoâ€dimensional difference gel electrophoresis. FASEB Journal, 2006, 20, A391.	0.2	0
150	Diaphragmatic nitric oxide synthase is not induced during mechanical ventilation. FASEB Journal, 2006, 20, .	0.2	0
151	Reloading the Diaphragm Following Mechanical Ventilation Does Not Promote Injury. Chest, 2005, 127, 2204-2210.	0.4	22
152	Exercise training provides cardioprotection against ischemia–reperfusion induced apoptosis in young and old animals. Experimental Gerontology, 2005, 40, 416-425.	1.2	105
153	Mechanical ventilation induces alterations of the ubiquitin-proteasome pathway in the diaphragm. Journal of Applied Physiology, 2005, 98, 1314-1321.	1.2	96
154	Mechanisms of disuse muscle atrophy: role of oxidative stress. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2005, 288, R337-R344.	0.9	294
155	Diaphragm Unloading via Controlled Mechanical Ventilation Alters the Gene Expression Profile. American Journal of Respiratory and Critical Care Medicine, 2005, 172, 1267-1275.	2.5	67
156	Mechanical Ventilation Depresses Protein Synthesis in the Rat Diaphragm. American Journal of Respiratory and Critical Care Medicine, 2004, 170, 994-999.	2.5	130
157	Trolox Attenuates Mechanical Ventilation–induced Diaphragmatic Dysfunction and Proteolysis. American Journal of Respiratory and Critical Care Medicine, 2004, 170, 1179-1184.	2.5	191
158	Dietary antioxidants and exercise. Journal of Sports Sciences, 2004, 22, 81-94.	1.0	237
159	Elevated MnSOD is not required for exercise-induced cardioprotection against myocardial stunning. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 287, H975-H980.	1.5	54
160	MnSOD antisense treatment and exercise-induced protection against arrhythmias. Free Radical Biology and Medicine, 2004, 37, 1360-1368.	1.3	71
161	Aging, Exercise, and Cardioprotection. Annals of the New York Academy of Sciences, 2004, 1019, 462-470.	1.8	61
162	Loss of exercise-induced cardioprotection after cessation of exercise. Journal of Applied Physiology, 2004, 96, 1299-1305.	1.2	119

#	Article	IF	CITATIONS
163	Exercise, antioxidants, and HSP72: protection against myocardial ischemia/reperfusion. Free Radical Biology and Medicine, 2003, 34, 800-809.	1.3	163
164	Cumulative Effects of Aging and Mechanical Ventilation on In Vitro Diaphragm Function. Chest, 2003, 124, 2302-2308.	0.4	57
165	Age and attenuation of exercise-induced myocardial HSP72 accumulation. American Journal of Physiology - Heart and Circulatory Physiology, 2003, 285, H1609-H1615.	1.5	54
166	Mechanical ventilation-induced oxidative stress in the diaphragm. Journal of Applied Physiology, 2003, 95, 1116-1124.	1.2	155
167	Short-Duration Mechanical Ventilation Enhances Diaphragmatic Fatigue Resistance but Impairs Force Production. Chest, 2003, 123, 195-201.	0.4	49
168	Mechanical Ventilation–induced Diaphragmatic Atrophy Is Associated with Oxidative Injury and Increased Proteolytic Activity. American Journal of Respiratory and Critical Care Medicine, 2002, 166, 1369-1374.	2.5	293
169	Adaptation of Upper Airway Muscles to Chronic Endurance Exercise. American Journal of Respiratory and Critical Care Medicine, 2002, 166, 287-293.	2.5	39
170	Exercise-Induced Changes in Diaphragmatic Bioenergetic and Antioxidant Capacity. Exercise and Sport Sciences Reviews, 2002, 30, 69-74.	1.6	8
171	Exercise and cardioprotection. Current Opinion in Cardiology, 2002, 17, 495-502.	0.8	114
172	Mechanical ventilation results in progressive contractile dysfunction in the diaphragm. Journal of Applied Physiology, 2002, 92, 1851-1858.	1.2	281
173	Increased antioxidant capacity does not attenuate muscle atrophy caused by unweighting. Journal of Applied Physiology, 2002, 93, 1959-1965.	1.2	58
174	Diaphragm contractile dysfunction in MyoD gene-inactivated mice. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2002, 283, R583-R590.	0.9	26
175	Effects of vitamin E deficiency on fatigue and muscle contractile properties. European Journal of Applied Physiology, 2002, 87, 272-277.	1.2	59
176	Short-term exercise improves myocardial tolerance to in vivo ischemia-reperfusion in the rat. Journal of Applied Physiology, 2001, 91, 2205-2212.	1.2	160
177	Short-term exercise training can improve myocardial tolerance to I/R without elevation in heat shock proteins. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 281, H1346-H1352.	1.5	139
178	Effects of vitamin E and α-lipoic acid on skeletal muscle contractile properties. Journal of Applied Physiology, 2001, 90, 1424-1430.	1.2	70
179	Exercise, heat shock proteins, and myocardial protection from I-R injury. Medicine and Science in Sports and Exercise, 2001, 33, 386-392.	0.2	81
180	Exercise training increases heat shock protein in skeletal muscles of old rats. Medicine and Science in Sports and Exercise, 2001, 33, 729-734.	0.2	87

#	Article	IF	CITATIONS
181	Short-term exercise training improves diaphragm antioxidant capacity and endurance. European Journal of Applied Physiology and Occupational Physiology, 2000, 81, 67-74.	1.2	86
182	Physiological antioxidants and exercise training. , 2000, , 221-242.		10
183	Heat stress attenuates skeletal muscle atrophy in hindlimb-unweighted rats. Journal of Applied Physiology, 2000, 88, 359-363.	1.2	213
184	Improved cardiac performance after ischemia in aged rats supplemented with vitamin E and α-lipoic acid. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2000, 279, R2149-R2155.	0.9	53
185	Exercise-induced alterations in skeletal muscle myosin heavy chain phenotype: dose-response relationship. Journal of Applied Physiology, 1999, 86, 1002-1008.	1.2	104
186	Exercise training protects against contraction-induced lipid peroxidation in the diaphragm. European Journal of Applied Physiology, 1999, 79, 268-273.	1.2	46
187	ANTIOXIDANTS AND EXERCISE. Clinics in Sports Medicine, 1999, 18, 525-536.	0.9	97
188	Analysis of cellular responses to free radicals: focus on exercise and skeletal muscle. Proceedings of the Nutrition Society, 1999, 58, 1025-1033.	0.4	195
189	Exercise training-induced alterations in skeletal muscle antioxidant capacity: a brief review. Medicine and Science in Sports and Exercise, 1999, 31, 987-997.	0.2	376
190	Endurance training reduces the rate of diaphragm fatigue in vitro. Medicine and Science in Sports and Exercise, 1999, 31, 1605.	0.2	26
191	Oxidative Stress, Antioxidant Status, and the Contracting Diaphragm. Applied Physiology, Nutrition, and Metabolism, 1998, 23, 23-55.	1.7	59
192	Exercise training improves myocardial tolerance to in vivo ischemia-reperfusion in the rat. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1998, 275, R1468-R1477.	0.9	127
193	Exercise training reduces myocardial lipid peroxidation following short-term ischemia-reperfusion. Medicine and Science in Sports and Exercise, 1998, 30, 1211-1216.	0.2	74
194	Exercise Training-Induced Changes in Respiratory Muscles. Sports Medicine, 1997, 24, 120-131.	3.1	35
195	Mechanism of specific force deficit in the senescent rat diaphragm. Respiration Physiology, 1997, 107, 149-155.	2.8	39
196	Myosin phenotype and bioenergetic characteristics of rat respiratory muscles. Medicine and Science in Sports and Exercise, 1997, 29, 1573-1579.	0.2	32
197	Clenbuterol-induced fiber type transition in the soleus of adult rats. European Journal of Applied Physiology and Occupational Physiology, 1996, 74, 391-396.	1.2	39
198	Clenbuterol-induced fiber type transition in the soleus of adult rats. European Journal of Applied Physiology, 1996, 74, 391-396.	1.2	6

#	Article	IF	CITATIONS
199	Effects of clenbuterol on contractile and biochemical properties of skeletal muscle. Medicine and Science in Sports and Exercise, 1996, 28, 669-676.	0.2	75
200	Adaptive strategies of respiratory muscles in response to endurance exercise. Medicine and Science in Sports and Exercise, 1996, 28, 1115-1122.	0.2	53
201	Regional training-induced alterations in diaphragmatic oxidative and antioxidant enzymes. Respiration Physiology, 1994, 95, 227-237.	2.8	86
202	Metabolic and antioxidant enzyme activities in the diaphragm: effects of acute exercise. Respiration Physiology, 1994, 96, 139-149.	2.8	43
203	Biochemical verification of quantitative histochemical analysis of succinate dehydrogenase activity in skeletal muscle fibres. The Histochemical Journal, 1993, 25, 491-496.	0.6	9
204	Caffeine and Exercise Performance. Sports Medicine, 1993, 15, 14-23.	3.1	62
205	Exercise-Induced Hypoxaemia in Elite Endurance Athletes. Sports Medicine, 1993, 16, 14-22.	3.1	50
206	Oxygen cost of treadmill running in 24-month-old Fischer-344 rats. Medicine and Science in Sports and Exercise, 1993, 25, 1259???1264.	0.2	88
207	High intensity training-induced changes in skeletal muscle antioxidant enzyme activity. Medicine and Science in Sports and Exercise, 1993, 25, 1135???1140.	0.2	164
208	Endurance training-induced increases in expiratory muscle oxidative capacity. Medicine and Science in Sports and Exercise, 1992, 24, 551???555.	0.2	13
209	High intensity exercise training-induced metabolic alterations in respiratory muscles. Respiration Physiology, 1992, 89, 169-177.	2.8	31
210	Diaphragmatic fiber type specific adaptation to endurance exercise. Respiration Physiology, 1992, 89, 195-207.	2.8	40
211	Exercise-induced hypoxemia in athletes: Role of inadequate hyperventilation. European Journal of Applied Physiology and Occupational Physiology, 1992, 65, 37-42.	1.2	58
212	Age-related changes in enzyme activity in the rat diaphragm. Respiration Physiology, 1991, 83, 1-9.	2.8	12