Ingrid Lafontaine

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9357338/publications.pdf

Version: 2024-02-01

24 papers 2,725 citations

430874 18 h-index 25 g-index

28 all docs

28 docs citations

times ranked

28

3365 citing authors

#	Article	IF	CITATIONS
1	Genome evolution in yeasts. Nature, 2004, 430, 35-44.	27.8	1,498
2	Comparative genomics of protoploid <i>Saccharomycetaceae</i> . Genome Research, 2009, 19, 1696-1709.	5.5	207
3	Comparative Genomics in Hemiascomycete Yeasts: Evolution of Sex, Silencing, and Subtelomeres. Molecular Biology and Evolution, 2005, 22, 856-873.	8.9	135
4	A Molecular Portrait of De Novo Genes in Yeasts. Molecular Biology and Evolution, 2018, 35, 631-645.	8.9	106
5	Reconstruction of ancestral chromosome architecture and gene repertoire reveals principles of genome evolution in a model yeast genus. Genome Research, 2016, 26, 918-932.	5.5	95
6	The RNA polymerase III-dependent family of genes in hemiascomycetes: comparative RNomics, decoding strategies, transcription and evolutionary implications. Nucleic Acids Research, 2006, 34, 1816-1835.	14.5	86
7	Comparative Genomics of Hemiascomycete Yeasts: Genes Involved in DNA Replication, Repair, and Recombination. Molecular Biology and Evolution, 2005, 22, 1011-1023.	8.9	79
8	The complete genome of Blastobotrys (Arxula) adeninivorans LS3 - a yeast of biotechnological interest. Biotechnology for Biofuels, 2014, 7, 66.	6.2	57
9	Promiscuous DNA in the nuclear genomes of hemiascomycetous yeasts. FEMS Yeast Research, 2008, 8, 846-857.	2.3	42
10	Large-scale exploration of growth inhibition caused by overexpression of genomic fragments in Saccharomyces cerevisiae. Genome Biology, 2004, 5, R72.	9.6	36
11	Gene relics in the genome of the yeast Saccharomyces cerevisiae. Gene, 2004, 335, 1-17.	2.2	36
12	UGE1 and UGE2 Regulate the UDP-Glucose/UDP-Galactose Equilibrium in Cryptococcus neoformans. Eukaryotic Cell, 2008, 7, 2069-2077.	3.4	36
13	Do symbiotic dinoflagellates secrete lipid droplets?. Limnology and Oceanography, 1994, 39, 925-929.	3.1	33
14	Optimization of Nucleic Acid Sequences. Biophysical Journal, 2000, 79, 680-685.	0.5	32
15	Collective variable modelling of nucleic acids. Current Opinion in Structural Biology, 1999, 9, 170-176.	5.7	27
16	Origin and fate of pseudogenes in Hemiascomycetes: a comparative analysis. BMC Genomics, 2010, 11, 260.	2.8	27
17	Evidence Supporting an Antimicrobial Origin of Targeting Peptides to Endosymbiotic Organelles. Cells, 2020, 9, 1795.	4.1	19
18	ADAPT: A molecular mechanics approach for studying the structural properties of long DNA sequences. Biopolymers, 2000, 56, 292-310.	2.4	18

#	Article	IF	CITATIONS
19	Ulysses: accurate detection of low-frequency structural variations in large insert-size sequencing libraries. Bioinformatics, 2015, 31, 801-808.	4.1	17
20	Macrotene chromosomes provide insights to a new mechanism of high-order gene amplification in eukaryotes. Nature Communications, 2015, 6, 6154.	12.8	13
21	The role of antimicrobial peptides in the evolution of endosymbiotic protein import. PLoS Pathogens, 2021, 17, e1009466.	4.7	10
22	Additional Layer of Regulation via Convergent Gene Orientation in Yeasts. Molecular Biology and Evolution, 2020, 37, 365-378.	8.9	8
23	High-speed Molecular Mechanics Searches for Optimal DNA Interaction Sites. Combinatorial Chemistry and High Throughput Screening, 2001, 4, 707-717.	1.1	3
24	The Evolutionary History of Peptidases Involved in the Processing of Organelle-Targeting Peptides. Genome Biology and Evolution, 2022, 14, .	2.5	1