Clemens M Altaner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9356214/publications.pdf

Version: 2024-02-01

44 papers

1,828 citations

430874 18 h-index 265206 42 g-index

45 all docs

45 docs citations

45 times ranked 2179 citing authors

#	Article	IF	Citations
1	Variation and genetic parameters of axial resin canal features in clones and families of Pinus radiata. New Forests, 2021, 52, 167-176.	1.7	5
2	Nanostructural deformation of high-stiffness spruce wood under tension. Scientific Reports, 2021, 11, 453.	3.3	14
3	Temperature-Dependent Blue Shifting of O–H Stretching Frequencies in Crystalline Cellulose Explained. Journal of Physical Chemistry B, 2020, 124, 4924-4930.	2.6	2
4	An approach to quantify natural durability of Eucalyptus bosistoana by near infrared spectroscopy for genetic selection. Industrial Crops and Products, 2020, 154, 112676.	5.2	11
5	Thickness-dependent stiffness of wood: potential mechanisms and implications. Holzforschung, 2020, 74, 1079-1087.	1.9	10
6	Measuring Molecular Strain in Rewetted and Never-Dried Eucalypt Wood with Raman Spectroscopy. Biomacromolecules, 2019, 20, 3191-3199.	5.4	2
7	Evaluation of near infrared spectroscopy to non-destructively measure growthÂstrain in trees. Cellulose, 2019, 26, 7663-7673.	4.9	7
8	Effects of variable selection and processing of NIR and ATR-IR spectra on the prediction of extractive content in Eucalyptus bosistoana heartwood. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 213, 111-117.	3.9	19
9	Function and three-dimensional structure of intervessel pit membranes in angiosperms: a review. IAWA Journal, 2019, 40, 673-702.	2.7	66
10	Calibration of near infrared spectroscopy (NIRS) data of three <i>Eucalyptus</i> species with extractive contents determined by ASE extraction for rapid identification of species and high extractive contents. Holzforschung, 2019, 73, 537-545.	1.9	6
11	Effects of mechanical stretching, desorption and isotope exchange on deuterated eucalypt wood studied by near infrared spectroscopy. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 211, 254-259.	3.9	5
12	Properties of rotary peeled veneer and laminated veneer lumber (LVL) from New Zealand grown Eucalyptus globoidea. New Zealand Journal of Forestry Science, 2018, 48, .	0.8	10
13	Predicting extractives content of Eucalyptus bosistoana F. Muell. Heartwood from stem cores by near infrared spectroscopy. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 198, 78-87.	3.9	17
14	Cell organelles and fluorescence of parenchyma cells in Eucalyptus bosistoana sapwood and heartwood investigated by microscopy. New Zealand Journal of Forestry Science, 2018, 48, .	0.8	11
15	Physiological changes during heartwood formation in young Eucalyptus bosistoana trees. IAWA Journal, 2018, 39, 382-394.	2.7	9
16	Molecular deformation of wood and cellulose studied by near infrared spectroscopy. Carbohydrate Polymers, 2018, 197, 1-8.	10.2	19
17	Genetic variation in heartwood properties and growth traits of Eucalyptus bosistoana. European Journal of Forest Research, 2018, 137, 565-572.	2.5	24
18	Quantification of the chemical composition of lignocellulosics by solution 1H NMR spectroscopy of acid hydrolysates. Cellulose, 2016, 23, 1003-1010.	4.9	6

#	Article	IF	CITATIONS
19	Diffraction evidence for the structure of cellulose microfibrils in bamboo, a model for grass and cereal celluloses. BMC Plant Biology, 2015, 15, 153.	3.6	35
20	Structure and spacing of cellulose microfibrils in woody cell walls of dicots. Cellulose, 2014, 21, 3887-3895.	4.9	45
21	Properties of young Araucaria heterophylla (Norfolk Island pine) reaction and normal wood. Holzforschung, 2014, 68, 817-821.	1.9	8
22	Pyrolysis gas-chromatography mass-spectrometry (Py-GC/MS) to identify compression wood in <i>Pinus radiata</i> saplings. Holzforschung, 2014, 68, 505-517.	1.9	10
23	How Cellulose Stretches: Synergism between Covalent and Hydrogen Bonding. Biomacromolecules, 2014, 15, 791-798.	5.4	103
24	Cellulose lβ investigated by IR-spectroscopy at low temperatures. Cellulose, 2014, 21, 3171-3179.	4.9	16
25	Distribution of extractives in Sitka spruce (Picea sitchensis) grown in the northern UK. European Journal of Wood and Wood Products, 2013, 71, 697-704.	2.9	15
26	Structure of Cellulose Microfibrils in Primary Cell Walls from Collenchyma Â. Plant Physiology, 2012, 161, 465-476.	4.8	268
27	Cellulose microfibril angles and cell-wall polymers in different wood types of Pinus radiata. Cellulose, 2012, 19, 1385-1404.	4.9	40
28	An unusual form of reaction wood in Koromiko [Hebe salicifolia G. Forst. (Pennell)], a southern hemisphere angiosperm. Planta, 2012, 235, 289-297.	3.2	10
29	Nanostructure of cellulose microfibrils in spruce wood. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E1195-203.	7.1	597
30	Wood shrinkage: influence of anatomy, cell wall architecture, chemical composition and cambial age. European Journal of Wood and Wood Products, 2010, 68, 87-94.	2.9	36
31	Distribution of (1->4)-Â-galactans, arabinogalactan proteins, xylans and (1->3)-Â-glucans in tracheid cell walls of softwoods. Tree Physiology, 2010, 30, 782-793.	3.1	42
32	Molecular xylem cell wall structure of an inclined Cycas micronesica stem, a tropical gymnosperm. IAWA Journal, 2010, 31, 3-11.	2.7	7
33	Measuring compression wood severity in spruce. Wood Science and Technology, 2009, 43, 279-290.	3.2	25
34	Detection of \hat{l}^2 -1-4-galactan in compression wood of Sitka spruce [Picea sitchensis (Bong.) Carri \tilde{A} re] by immunofluorescence. Holzforschung, 2007, 61, 311-316.	1.9	38
35	Microfibril diameter in celery collenchyma cellulose: X-ray scattering and NMR evidence. Cellulose, 2007, 14, 235-246.	4.9	121
36	In situ detection of cell wall polysaccharides in sitka spruce (Picea sitchensis (Bong.) Carrière) wood tissue. BioResources, 2007, 2, 284-295.	1.0	13

#	Article	IF	CITATIONS
37	Spatial relationships between polymers in Sitka spruce: Proton spin-diffusion studies. Holzforschung, 2006, 60, 665-673.	1.9	22
38	Endoglucanase Degradation and Enzyme-Aided Characterization of Cellulose Acetates. Macromolecular Symposia, 2005, 223, 137-150.	0.7	4
39	4.3 Degradation and modification of cellulose acetates by biological systems. Macromolecular Symposia, 2004, 208, 239-254.	0.7	18
40	Specificity of an Aspergillus Niger Esterase Deacetylating Cellulose Acetate. Cellulose, 2003, 10, 85-95.	4.9	22
41	Title is missing!. Cellulose, 2003, 10, 391-395.	4.9	8
42	Determination of the substituent distribution along cellulose acetate chains as revealed by enzymatic and chemical methods. Carbohydrate Polymers, 2003, 54, 353-362.	10.2	26
43	Regioselective deacetylation of cellulose acetates by acetyl xylan esterases of different CE-families. Journal of Biotechnology, 2003, 105, 95-104.	3.8	43
44	Title is missing!. Cellulose, 2001, 8, 259-265.	4.9	12