Matthew D Hirschey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9355792/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Deglutarylation of glutaryl-CoA dehydrogenase by deacylating enzyme SIRT5 promotes lysine oxidation in mice. Journal of Biological Chemistry, 2022, 298, 101723.	3.4	5
2	Statin therapy inhibits fatty acid synthase via dynamic protein modifications. Nature Communications, 2022, 13, 2542.	12.8	7
3	A cell-nonautonomous mechanism of yeast chronological aging regulated by caloric restriction and one-carbon metabolism. Journal of Biological Chemistry, 2021, 296, 100125.	3.4	17
4	Sirtuin 5 Is Regulated by the SCF ^{Cyclin F} Ubiquitin Ligase and Is Involved in Cell Cycle Control. Molecular and Cellular Biology, 2021, 41, .	2.3	8
5	Multiple metabolic changes mediate the response of Caenorhabditis elegans to the complex I inhibitor rotenone. Toxicology, 2021, 447, 152630.	4.2	14
6	Discovering the landscape of protein modifications. Molecular Cell, 2021, 81, 1868-1878.	9.7	43
7	Early-life mitochondrial DNA damage results in lifelong deficits in energy production mediated by redox signaling in Caenorhabditis elegans. Redox Biology, 2021, 43, 102000.	9.0	15
8	β-Cell-specific ablation of sirtuin 4 does not affect nutrient-stimulated insulin secretion in mice. American Journal of Physiology - Endocrinology and Metabolism, 2020, 319, E805-E813.	3.5	2
9	NRF2 activation promotes the recurrence of dormant tumour cells through regulation of redox and nucleotide metabolism. Nature Metabolism, 2020, 2, 318-334.	11.9	106
10	Lab life — rebuild it better after coronavirus lockdowns ease. Nature, 2020, 582, 184-184.	27.8	1
11	Cellular energetics and mitochondrial uncoupling in canine aging. GeroScience, 2019, 41, 229-242.	4.6	27
12	SIRT6 Promotes Hepatic Beta-Oxidation via Activation of PPARα. Cell Reports, 2019, 29, 4127-4143.e8.	6.4	68
13	Investigating RNA expression profiles altered by nicotinamide mononucleotide therapy in a chronic model of alcoholic liver disease. Human Genomics, 2019, 13, 65.	2.9	13
14	Sensing Mitochondrial Acetyl-CoA to Tune Respiration. Trends in Endocrinology and Metabolism, 2019, 30, 1-3.	7.1	5
15	Quantifying Competition among Mitochondrial Protein Acylation Events Induced by Ethanol Metabolism. Journal of Proteome Research, 2019, 18, 1513-1531.	3.7	17
16	Reactive Acyl-CoA Species Modify Proteins and Induce Carbon Stress. Trends in Biochemical Sciences, 2018, 43, 369-379.	7.5	50
17	Loss of sirtuin 4 leads to elevated glucose―and leucineâ€stimulated insulin levels and accelerated ageâ€induced insulin resistance in multiple murine genetic backgrounds. Journal of Inherited Metabolic Disease, 2018, 41, 59-72.	3.6	19
18	Fructose and glucose can regulate mammalian target of rapamycin complex 1 and lipogenic gene expression via distinct pathways. Journal of Biological Chemistry, 2018, 293, 2006-2014.	3.4	12

#	Article	IF	CITATIONS
19	Reactive Acyl-CoA Species and Deacylation by the Mitochondrial Sirtuins. , 2018, , 83-93.		0
20	Ablation of Sirtuin5 in the postnatal mouse heart results in protein succinylation and normal survival in response to chronic pressure overload. Journal of Biological Chemistry, 2018, 293, 10630-10645.	3.4	31
21	Remodeling of the Acetylproteome by SIRT3 Manipulation Fails to Affect Insulin Secretion or β Cell Metabolism in the Absence of Overnutrition. Cell Reports, 2018, 24, 209-223.e6.	6.4	26
22	Sirtuin 4 controls leucine metabolism and insulin secretion by reversing effects of reactive metabolites. FASEB Journal, 2018, 32, 670.23.	0.5	0
23	A Prob(e)able Route to Lysine Acylation. Cell Chemical Biology, 2017, 24, 126-128.	5.2	3
24	Role of NAD+ and mitochondrial sirtuins in cardiac and renal diseases. Nature Reviews Nephrology, 2017, 13, 213-225.	9.6	158
25	SIRT4 Is a Lysine Deacylase that Controls Leucine Metabolism and Insulin Secretion. Cell Metabolism, 2017, 25, 838-855.e15.	16.2	259
26	A Class of Reactive Acyl-CoA Species Reveals the Non-enzymatic Origins of Protein Acylation. Cell Metabolism, 2017, 25, 823-837.e8.	16.2	205
27	Dietary Restriction and AMPK Increase Lifespan via Mitochondrial Network and Peroxisome Remodeling. Cell Metabolism, 2017, 26, 884-896.e5.	16.2	265
28	Sirtuin 5 is required for mouse survival in response to cardiac pressure overload. Journal of Biological Chemistry, 2017, 292, 19767-19781.	3.4	79
29	Metabolic control by sirtuins and other enzymes that sense NAD+, NADH, or their ratio. Biochimica Et Biophysica Acta - Bioenergetics, 2017, 1858, 991-998.	1.0	138
30	Mechanismâ€Based Inhibitors of the Human Sirtuin 5 Deacylase: Structure–Activity Relationship, Biostructural, and Kinetic Insight. Angewandte Chemie, 2017, 129, 15032-15037.	2.0	7
31	Mechanismâ€Based Inhibitors of the Human Sirtuin 5 Deacylase: Structure–Activity Relationship, Biostructural, and Kinetic Insight. Angewandte Chemie - International Edition, 2017, 56, 14836-14841.	13.8	62
32	Chronic Ethanol Metabolism Inhibits Hepatic Mitochondrial Superoxide Dismutase via Lysine Acetylation. Alcoholism: Clinical and Experimental Research, 2017, 41, 1705-1714.	2.4	24
33	Nicotinamide mononucleotide requires SIRT3 to improve cardiac function and bioenergetics in a Friedreich's ataxia cardiomyopathy model. JCI Insight, 2017, 2, .	5.0	96
34	daf-16/FoxO promotes gluconeogenesis and trehalose synthesis during starvation to support survival. ELife, 2017, 6, .	6.0	68
35	Frontispiz: Mechanismâ€Based Inhibitors of the Human Sirtuin 5 Deacylase: Structure–Activity Relationship, Biostructural, and Kinetic Insight. Angewandte Chemie, 2017, 129, .	2.0	0
36	Progressive mitochondrial protein lysine acetylation and heart failure in a model of Friedreich's ataxia cardiomyopathy. PLoS ONE, 2017, 12, e0178354.	2.5	22

MATTHEW D HIRSCHEY

#	Article	IF	CITATIONS
37	From the Cover: Arsenite Uncouples Mitochondrial Respiration and Induces a Warburg-like Effect in <i>Caenorhabditis elegans</i> . Toxicological Sciences, 2016, 152, 349-362.	3.1	37
38	In Vivo Determination of Mitochondrial Function Using Luciferaseâ€Expressing <i>Caenorhabditis elegans</i> : Contribution of Oxidative Phosphorylation, Glycolysis, and Fatty Acid Oxidation to Toxicantâ€Induced Dysfunction. Current Protocols in Toxicology / Editorial Board, Mahin D Maines (editor-in-chief) [et Al], 2016, 69, 25.8.1-25.8.22.	1.1	25
39	Lipids Reprogram Metabolism to Become a Major Carbon Source for Histone Acetylation. Cell Reports, 2016, 17, 1463-1472.	6.4	266
40	Proteomic Profiling Reveals Adaptive Responses to Surgical Myocardial Ischemia–Reperfusion in Hibernating Arctic Ground Squirrels Compared to Rats. Anesthesiology, 2016, 124, 1296-1310.	2.5	26
41	Investigating the Sensitivity of NAD+-dependent Sirtuin Deacylation Activities to NADH. Journal of Biological Chemistry, 2016, 291, 7128-7141.	3.4	91
42	Deacetylation by SIRT3 Relieves Inhibition of Mitochondrial Protein Function. , 2016, , 105-138.		3
43	High-Resolution Metabolomics with Acyl-CoA Profiling Reveals Widespread Remodeling in Response to Diet*. Molecular and Cellular Proteomics, 2015, 14, 1489-1500.	3.8	95
44	Neuronal CRTC-1 Governs Systemic Mitochondrial Metabolism and Lifespan via a Catecholamine Signal. Cell, 2015, 160, 842-855.	28.9	175
45	Effect of aerobic training on the host systemic milieu in patients with solid tumours: an exploratory correlative study. British Journal of Cancer, 2015, 112, 825-831.	6.4	28
46	SIRT3 regulates progression and development of diseases of aging. Trends in Endocrinology and Metabolism, 2015, 26, 486-492.	7.1	167
47	Metabolic Regulation by Lysine Malonylation, Succinylation, and Glutarylation. Molecular and Cellular Proteomics, 2015, 14, 2308-2315.	3.8	370
48	SIRT3 Directs Carbon Traffic in Muscle to Promote Glucose Control. Diabetes, 2015, 64, 3058-3060.	0.6	8
49	Long-chain Acylcarnitines Reduce Lung Function by Inhibiting Pulmonary Surfactant. Journal of Biological Chemistry, 2015, 290, 23897-23904.	3.4	46
50	Dysregulated metabolism contributes to oncogenesis. Seminars in Cancer Biology, 2015, 35, S129-S150.	9.6	225
51	Designing a broad-spectrum integrative approach for cancer prevention and treatment. Seminars in Cancer Biology, 2015, 35, S276-S304.	9.6	220
52	Phosphoproteomic Profiling of Human Myocardial Tissues Distinguishes Ischemic from Non-Ischemic End Stage Heart Failure. PLoS ONE, 2014, 9, e104157.	2.5	39
53	Acyl-CoA thioesterase-2 facilitates mitochondrial fatty acid oxidation in the liver. Journal of Lipid Research, 2014, 55, 2458-2470.	4.2	64
54	Mitochondria, Energetics, Epigenetics, and Cellular Responses to Stress. Environmental Health Perspectives, 2014, 122, 1271-1278.	6.0	221

MATTHEW D HIRSCHEY

#	Article	IF	CITATIONS
55	Lysine Glutarylation Is a Protein Posttranslational Modification Regulated by SIRT5. Cell Metabolism, 2014, 19, 605-617.	16.2	647
56	Nonenzymatic Protein Acylation as a Carbon Stress Regulated by Sirtuin Deacylases. Molecular Cell, 2014, 54, 5-16.	9.7	293
57	SnapShot: Mammalian Sirtuins. Cell, 2014, 159, 956-956.e1.	28.9	74
58	Measurement of Fatty Acid Oxidation Rates in Animal Tissues and Cell Lines. Methods in Enzymology, 2014, 542, 391-405.	1.0	120
59	Loss of SIRT3 leads to a compensatory shift in cellular metabolism promoting cancer cell growth. Cancer & Metabolism, 2014, 2, .	5.0	0
60	SIRT3 Weighs Heavily in the Metabolic Balance: A New Role for SIRT3 in Metabolic Syndrome. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2013, 68, 105-107.	3.6	27
61	Generating Mammalian Sirtuin Tools for Protein-Interaction Analysis. Methods in Molecular Biology, 2013, 1077, 69-78.	0.9	0
62	Sirtuin 3 (SIRT3) Protein Regulates Long-chain Acyl-CoA Dehydrogenase by Deacetylating Conserved Lysines Near the Active Site. Journal of Biological Chemistry, 2013, 288, 33837-33847.	3.4	147
63	Whole-organism screening for gluconeogenesis identifies activators of fasting metabolism. Nature Chemical Biology, 2013, 9, 97-104.	8.0	161
64	Suppression of Oxidative Stress by β-Hydroxybutyrate, an Endogenous Histone Deacetylase Inhibitor. Science, 2013, 339, 211-214.	12.6	1,264
65	Targeting sirtuins for the treatment of diabetes. Diabetes Management, 2013, 3, 245-257.	0.5	42
66	HINT2 and fatty liver disease: Mitochondrial protein hyperacetylation gives a hint?. Hepatology, 2013, 57, 1681-1683.	7.3	3
67	The sirtuins, oxidative stress and aging: an emerging link. Aging, 2013, 5, 144-150.	3.1	209
68	Ethanol Metabolism Modifies Hepatic Protein Acylation in Mice. PLoS ONE, 2013, 8, e75868.	2.5	54
69	Oxygen Flux Analysis to Understand the Biological Function of Sirtuins. Methods in Molecular Biology, 2013, 1077, 241-258.	0.9	16
70	Mitochondrial protein acetylation regulates metabolism. Essays in Biochemistry, 2012, 52, 23-35.	4.7	207
71	Hepatic Insulin Signaling Is Required for Obesity-Dependent Expression of SREBP-1c mRNA but Not for Feeding-Dependent Expression. Cell Metabolism, 2012, 15, 873-884.	16.2	172
72	Mitochondrial Acetylome Analysis in a Mouse Model of Alcohol-Induced Liver Injury Utilizing SIRT3 Knockout Mice. Journal of Proteome Research, 2012, 11, 1633-1643.	3.7	113

MATTHEW D HIRSCHEY

#	Article	IF	CITATIONS
73	Deficiency of the lipid synthesis enzyme, DGAT1, extends longevity in mice. Aging, 2012, 4, 13-27.	3.1	37
74	Old Enzymes, New Tricks: Sirtuins Are NAD+-Dependent De-acylases. Cell Metabolism, 2011, 14, 718-719.	16.2	91
75	SIRT3 Deficiency and Mitochondrial Protein Hyperacetylation Accelerate the Development of the Metabolic Syndrome. Molecular Cell, 2011, 44, 177-190.	9.7	691
76	Mitochondrial Acetylomic Analysis in a Mouse Model of Alcohol-Induced Liver Injury Utilizing SIRT3 Knockout Mice. Free Radical Biology and Medicine, 2011, 51, S19-S20.	2.9	1
77	Sirtuin-3 (Sirt3) regulates skeletal muscle metabolism and insulin signaling via altered mitochondrial oxidation and reactive oxygen species production. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 14608-14613.	7.1	403
78	SIRT3 Regulates Mitochondrial Protein Acetylation and Intermediary Metabolism. Cold Spring Harbor Symposia on Quantitative Biology, 2011, 76, 267-277.	1.1	159
79	SIRT1 and SIRT3 Deacetylate Homologous Substrates: AceCS1,2 and HMGCS1,2. Aging, 2011, 3, 635-642.	3.1	85
80	Acetate metabolism and aging: An emerging connection. Mechanisms of Ageing and Development, 2010, 131, 511-516.	4.6	67
81	Sirtuin regulation of mitochondria: energy production, apoptosis, and signaling. Trends in Biochemical Sciences, 2010, 35, 669-675.	7.5	549
82	Mitochondrial sirtuins. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2010, 1804, 1645-1651.	2.3	199
83	SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature, 2010, 464, 121-125.	27.8	1,388
84	SIRT3 Deacetylates Mitochondrial 3-Hydroxy-3-Methylglutaryl CoA Synthase 2 and Regulates Ketone Body Production. Cell Metabolism, 2010, 12, 654-661.	16.2	418
85	Calorie Restriction Reduces Oxidative Stress by SIRT3-Mediated SOD2 Activation. Cell Metabolism, 2010, 12, 662-667.	16.2	1,142
86	Chapter 8 Acetylation of Mitochondrial Proteins. Methods in Enzymology, 2009, 457, 137-147.	1.0	48
87	Mammalian Sir2 Homolog SIRT3 Regulates Global Mitochondrial Lysine Acetylation. Molecular and Cellular Biology, 2007, 27, 8807-8814.	2.3	1,097
88	Imaging Escherichia coli using functionalized core/shell CdSe/CdS quantum dots. Journal of Biological Inorganic Chemistry, 2006, 11, 663-669.	2.6	46
89	Measuring fatty acid oxidation in tissue homogenates. Protocol Exchange, 0, , .	0.3	10
90	Intrinsic Mitochondrial Dynamics and Cytoskeletal Properties Underlie Aging Diversity in Dogs. SSRN Electronic Journal, 0, , .	0.4	0