Mauro Antezza

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9355334/publications.pdf

Version: 2024-02-01

136950 144013 3,566 90 32 57 citations h-index g-index papers 91 91 91 1512 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Dual-band nonreciprocal thermal radiation by coupling optical Tamm states in magnetophotonic multilayers. International Journal of Thermal Sciences, 2022, 175, 107457.	4.9	43
2	Photothermal behavior for two-dimensional nanoparticle ensembles: Multiple scattering and thermal accumulation effects. Physical Review B, 2022, 105, .	3.2	6
3	Controllable thermal radiation from twisted bilayer graphene. International Journal of Heat and Mass Transfer, 2022, 194, 123076.	4.8	13
4	Many-body effective thermal conductivity in phase-change nanoparticle chains due to near-field radiative heat transfer. International Journal of Heat and Mass Transfer, 2021, 166, 120793.	4.8	24
5	Strong geometry dependence of the Casimir force between interpenetrated rectangular gratings. Nature Communications, 2021, 12, 600.	12.8	27
6	Dynamical polarizability of graphene with spatial dispersion. Physical Review B, 2021, 103, .	3.2	23
7	Polariton topological transition effects on radiative heat transfer. Physical Review B, 2021, 103, .	3.2	16
8	Magnetic field-induced emissivity tuning of InSb-based metamaterials in the terahertz frequency regime. Optical Materials Express, 2021, 11, 3141.	3.0	10
9	Ultrahigh-rectification near-field radiative thermal diode using infrared-transparent film backsided phase-transition metasurface. Applied Physics Letters, 2021, 119, .	3.3	14
10	Dissipative Topological Phase Transition with Strong System-Environment Coupling. Physical Review Letters, 2021, 127, 250402.	7.8	17
11	Magnetoplasmonic manipulation of nanoscale thermal radiation using twisted graphene gratings. International Journal of Heat and Mass Transfer, 2020, 150, 119305.	4.8	64
12	Hybridization of topological surface states with a flat band. Journal of Physics Condensed Matter, 2020, 32, 165501.	1.8	6
13	Radiative heat transfer and radiative thermal energy for two-dimensional nanoparticle ensembles. Physical Review B, 2020, 102, .	3.2	28
14	Near-field radiative heat transfer between twisted nanoparticle gratings. Applied Physics Letters, 2020, 117, .	3.3	19
15	Giant thermal magnetoresistance driven by graphene magnetoplasmon. Applied Physics Letters, 2020, 117, .	3.3	16
16	Continuously variable emission for mechanical deformation induced radiative cooling. Communications Materials, 2020, 1 , .	6.9	30
17	Casimir-Polder force and torque for anisotropic molecules close to conducting planes and their effect on <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>CO</mml:mi><mml:mn>2<td>nn3:2/mml:</td><td>:m\$4b></td></mml:mn></mml:msub></mml:math>	nn3:2/mml:	:m\$4b>
18	Non-Reciprocal, Robust Surface Plasmon Polaritons on Gyrotropic Interfaces. IEEE Transactions on Antennas and Propagation, 2020, 68, 3718-3729.	5.1	24

#	Article	IF	Citations
19	Giant Casimir Torque between Rotated Gratings and the <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>l¸</mml:mi><mml:mo>=</mml:mo><mml:mn>0</mml:mn></mml:math> Anomaly. Physical Review Letters, 2020, 124, 013903.	7.8	24
20	Disorder-induced phase transition in Dirac systems beyond the linear approximation. Physical Review B, 2020, 101 , .	3.2	10
21	Quantum machines powered by correlated baths. Physical Review Research, 2020, 2, .	3.6	28
22	Radiative thermal switch driven by anisotropic black phosphorus plasmons. Optics Express, 2020, 28, 26922.	3.4	22
23	Active control of near-field radiative heat transfer by a graphene-gratings coating-twisting method. Optics Letters, 2020, 45, 2914.	3.3	49
24	Magnetoplasmon-surface phonon polaritons' coupling effects in radiative heat transfer. Optics Letters, 2020, 45, 5148.	3.3	14
25	Hybrid thermal Yagi-Uda nanoantennas for directional and narrow band long-wavelength IR radiation sources. Optics Express, 2020, 28, 19334.	3.4	8
26	Inverse design of a 1D dielectric metasurface by topology optimization: fluctuations-trend analysis assisted by a diamond-square algorithm. Journal of the Optical Society of America B: Optical Physics, 2020, 37, 3721.	2.1	1
27	Metasurface-mediated anisotropic radiative heat transfer between nanoparticles. Physical Review B, 2019, 100, .	3.2	44
28	Giant resonant radiative heat transfer between nanoparticles. Physical Review B, 2019, 100, .	3.2	27
29	Unidirectional and diffractionless surface plasmon polaritons on three-dimensional nonreciprocal plasmonic platforms. Physical Review B, 2019, 99, .	3.2	41
30	Non-Markovian transient Casimir-Polder force and population dynamics on excited- and ground-state atoms: Weak- and strong-coupling regimes in generally nonreciprocal environments. Physical Review A, 2019, 99, .	2.5	2
31	Radiative heat transfer between metallic nanoparticle clusters in both near field and far field. Physical Review B, 2019, 99, .	3.2	28
32	Graphene-based thermal repeater. Applied Physics Letters, 2019, 115, .	3.3	40
33	Manipulating Surface Waves and Nanoscale Forces/Torques with Nonreciprocal Platforms. , 2019, , .		0
34	Coupling between subwavelength nano-slit lattice modes and metal-insulator-graphene cavity modes: a semi-analytical model. OSA Continuum, 2019, 2, 1296.	1.8	4
35	Fluctuation-induced forces on an atom near a photonic topological material. Physical Review A, 2018, 97, .	2.5	49
36	Reconciliation of quantum local master equations with thermodynamics. New Journal of Physics, 2018, 20, 113024.	2.9	166

3

#	Article	IF	CITATIONS
37	Optical torque on a two-level system near a strongly nonreciprocal medium. Physical Review B, 2018, 98, .	3.2	18
38	Inducing and controlling rotation on small objects using photonic topological materials. Physical Review B, $2018, 98, .$	3.2	11
39	Spontaneous lateral atomic recoil force close to a photonic topological material. Physical Review B, 2018, 97, .	3.2	29
40	Radiative heat transfer between metallic gratings using Fourier modal method with adaptive spatial resolution. Physical Review B, 2017, 95, .	3.2	41
41	Excitation injector in an atomic chain: Long-range transport and efficiency amplification. Physical Review A, 2017, 95, .	2.5	10
42	Strong Thermal and Electrostatic Manipulation of the Casimir Force in Graphene Multilayers. Physical Review Letters, 2017, 118, 126101.	7.8	30
43	Giant Interatomic Energy-Transport Amplification with Nonreciprocal Photonic Topological Insulators. Physical Review Letters, 2017, 119, 173901.	7.8	25
44	Many-body heat radiation and heat transfer in the presence of a nonabsorbing background medium. Physical Review B, 2017, 95, .	3.2	41
45	Radiative heat transfer and nonequilibrium Casimir-Lifshitz force in many-body systems with planar geometry. Physical Review B, 2017, 95, .	3.2	59
46	Near-field heat transfer between graphene/hBN multilayers. Physical Review B, 2017, 95, .	3.2	155
47	Graphene-based amplification and tuning of near-field radiative heat transfer between dissimilar polar materials. Physical Review B, 2017, 96, .	3.2	44
48	Robust entanglement with three-dimensional nonreciprocal photonic topological insulators. Physical Review A, 2017, 95, .	2.5	33
49	Casimir-Lifshitz force for nonreciprocal media and applications to photonic topological insulators. Physical Review A, 2017, 96, .	2.5	18
50	A self-contained quantum harmonic engine. Europhysics Letters, 2017, 120, 60006.	2.0	24
51	Hyperbolic waveguide for long-distance transport of near-field heat flux. Physical Review B, 2016, 94, .	3.2	55
52	Light-induced optomechanical forces in graphene waveguides. Physical Review B, 2016, 93, .	3.2	8
53	Otto engine beyond its standard quantum limit. Physical Review E, 2016, 93, 022122.	2.1	34
54	Quantum thermal machine acting on a many-body quantum system: Role of correlations in thermodynamic tasks. Physical Review E, 2016, 93, 022134.	2.1	30

#	Article	lF	CITATIONS
55	Hyperbolic waveguide for long distance transport of near-field heat flux. , 2016, , .		О
56	Casimir interaction between a sphere and a grating. Physical Review A, 2015, 92, .	2.5	24
57	Distributed thermal tasks on many-body systems through a single quantum machine. Europhysics Letters, 2015, 112, 40004.	2.0	4
58	Thermally activated nonlocal amplification in quantum energy transport. Europhysics Letters, 2015, 110, 40002.	2.0	18
59	Nonequilibrium dissipation-driven steady many-body entanglement. Physical Review A, 2015, 91, .	2.5	17
60	Quantum thermal machines with single nonequilibrium environments. Physical Review A, 2015, 91, .	2.5	53
61	Optomechanical Rydberg-Atom Excitation via Dynamic Casimir-Polder Coupling. Physical Review Letters, 2014, 113, 023601.	7.8	31
62	Matter waves in two-dimensional arbitrary atomic crystals. Physical Review A, 2014, 90, .	2.5	3
63	Casimir-Lifshitz force out of thermal equilibrium between dielectric gratings. Physical Review A, 2014, 90, .	2.5	23
64	Matter waves in atomic artificial graphene. Europhysics Letters, 2014, 107, 30006.	2.0	3
65	Three-body radiative heat transfer and Casimir-Lifshitz force out of thermal equilibrium for arbitrary bodies. Physical Review A, 2014, 89, .	2.5	83
66	Photonic band gap in an imperfect atomic diamond lattice: Penetration depth and effects of finite size and vacancies. Physical Review A, 2013, 88, .	2.5	27
67	Plasmon amplification by strong coupling in a layered structure. Proceedings of SPIE, 2013, , .	0.8	0
68	Quantum systems in a stationary environment out of thermal equilibrium. Physical Review A, 2013, 87, .	2.5	31
69	Creation and protection of entanglement in systems out of thermal equilibrium. New Journal of Physics, 2013, 15, 113052.	2.9	41
70	Steady entanglement out of thermal equilibrium. Europhysics Letters, 2013, 104, 10006.	2.0	31
71	Three-Body Amplification of Photon Heat Tunneling. Physical Review Letters, 2012, 109, 244302.	7.8	109
72	Dynamics of an elementary quantum system in environments out of thermal equilibrium. Europhysics Letters, 2012, 100, 20006.	2.0	15

#	Article	IF	CITATIONS
73	Casimir-Lifshitz force out of thermal equilibrium and heat transfer between arbitrary bodies. Europhysics Letters, 2011, 95, 61002.	2.0	81
74	Scattering-matrix approach to Casimir-Lifshitz force and heat transfer out of thermal equilibrium between arbitrary bodies. Physical Review A, 2011, 84, .	2.5	136
75	Fluctuation-Induced Forces Between Atoms and Surfaces: The Casimir–Polder Interaction. Lecture Notes in Physics, 2011, , 345-391.	0.7	18
76	Quantitative study of two- and three-dimensional strong localization of matter waves by atomic scatterers. Physical Review A, 2010, 82, .	2.5	13
77	Fano-Hopfield model and photonic band gaps for an arbitrary atomic lattice. Physical Review A, 2009, 80, .	2.5	38
78	Spectrum of Light in a Quantum Fluctuating Periodic Structure. Physical Review Letters, 2009, 103, 123903.	7.8	31
79	Radiation induced force between two planar waveguides. European Physical Journal D, 2008, 46, 157-164.	1.3	33
80	Casimir-Lifshitz force out of thermal equilibrium. Physical Review A, 2008, 77, .	2.5	134
81	Optical properties of atomic Mott insulators: From slow light to dynamical Casimir effects. Physical Review A, 2008, 77, .	2.5	36
82	Dark solitons in a superfluid Fermi gas. Physical Review A, 2007, 76, .	2.5	75
83	Breathing modes of a fast rotating Fermi gas. Physical Review A, 2007, 75, .	2.5	11
84	Measurement of the Temperature Dependence of the Casimir-Polder Force. Physical Review Letters, 2007, 98, 063201.	7.8	374
85	Casimir-Lifshitz Force Out of Thermal Equilibrium and Asymptotic Nonadditivity. Physical Review Letters, 2006, 97, 223203.	7.8	70
86	Surface–atom force out of thermal equilibrium and its effect on ultra-cold atoms. Journal of Physics A, 2006, 39, 6117-6126.	1.6	55
87	New Asymptotic Behavior of the Surface-Atom Force out of Thermal Equilibrium. Physical Review Letters, 2005, 95, 113202.	7.8	178
88	Publisher's Note: Effect of the Casimir-Polder force on the collective oscillations of a trapped Bose-Einstein condensate [Phys. Rev. A70, 053619 (2004)]. Physical Review A, 2004, 70, .	2.5	1
89	Effect of the Casimir-Polder force on the collective oscillations of a trapped Bose-Einstein condensate. Physical Review A, 2004, 70, .	2.5	139
90	Quantum metamaterials: a brave new world. SPIE Newsroom, 0, , .	0.1	14