Hyeryun Choe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9354455/publications.pdf Version: 2024-02-01

HVEDVIIN CHOE

#	Article	IF	CITATIONS
1	Mechanisms of SARS-CoV-2 entry into cells. Nature Reviews Molecular Cell Biology, 2022, 23, 3-20.	37.0	1,532
2	Functional importance of the D614G mutation in the SARS-CoV-2 spike protein. Biochemical and Biophysical Research Communications, 2021, 538, 108-115.	2.1	79
3	Hydroxychloroquine-mediated inhibition of SARS-CoV-2 entry is attenuated by TMPRSS2. PLoS Pathogens, 2021, 17, e1009212.	4.7	167
4	How SARS-CoV-2 first adapted in humans. Science, 2021, 372, 466-467.	12.6	21
5	Mutations derived from horseshoe bat ACE2 orthologs enhance ACE2-Fc neutralization of SARS-CoV-2. PLoS Pathogens, 2021, 17, e1009501.	4.7	97
6	An Engineered Receptor-Binding Domain Improves the Immunogenicity of Multivalent SARS-CoV-2 Vaccines. MBio, 2021, 12, .	4.1	20
7	Clinical Antiviral Drug Arbidol Inhibits Infection by SARS-CoV-2 and Variants through Direct Binding to the Spike Protein. ACS Chemical Biology, 2021, 16, 2845-2851.	3.4	16
8	SARS-CoV-2 spike-protein D614G mutation increases virion spike density and infectivity. Nature Communications, 2020, 11, 6013.	12.8	828
9	A Single Immunization with Nucleoside-Modified mRNA Vaccines Elicits Strong Cellular and Humoral Immune Responses against SARS-CoV-2 in Mice. Immunity, 2020, 53, 724-732.e7.	14.3	267
10	Phosphatidylethanolamine and Phosphatidylserine Synergize To Enhance GAS6/AXL-Mediated Virus Infection and Efferocytosis. Journal of Virology, 2020, 95, .	3.4	19
11	Transferrin receptor 1 is a cellular receptor for human heme-albumin. Communications Biology, 2020, 3, 621.	4.4	19
12	AAV vectors engineered to target insulin receptor greatly enhance intramuscular gene delivery. Molecular Therapy - Methods and Clinical Development, 2020, 19, 496-506.	4.1	8
13	Zika Virus-Immune Plasmas from Symptomatic and Asymptomatic Individuals Enhance Zika Pathogenesis in Adult and Pregnant Mice. MBio, 2019, 10, .	4.1	30
14	Reply to Marques and Drexler, "Complex Scenario of Homotypic and Heterotypic Zika Virus Immune Enhancement― MBio, 2019, 10, .	4.1	1
15	Label-free pathogen detection by a deoxyribozyme cascade with visual signal readout. Sensors and Actuators B: Chemical, 2019, 282, 945-951.	7.8	14
16	Diverse pathways of escape from all well-characterized VRC01-class broadly neutralizing HIV-1 antibodies. PLoS Pathogens, 2018, 14, e1007238.	4.7	18
17	AXL-dependent infection of human fetal endothelial cells distinguishes Zika virus from other pathogenic flaviviruses. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 2024-2029.	7.1	177
18	Ontogeny of the B- and T-cell response in a primary Zika virus infection of a dengue-naÃ-ve individual during the 2016 outbreak in Miami, FL. PLoS Neglected Tropical Diseases, 2017, 11, e0006000.	3.0	48

#	Article	IF	CITATIONS
19	Zika virus infection during the period of maximal brain growth causes microcephaly and corticospinal neuron apoptosis in wild type mice. Scientific Reports, 2016, 6, 34793.	3.3	80
20	Ebselen, a Small-Molecule Capsid Inhibitor of HIV-1 Replication. Antimicrobial Agents and Chemotherapy, 2016, 60, 2195-2208.	3.2	91
21	Virion-associated phosphatidylethanolamine promotes TIM1-mediated infection by Ebola, dengue, and West Nile viruses. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14682-14687.	7.1	120
22	Novel Arenavirus Entry Inhibitors Discovered by Using a Minigenome Rescue System for High-Throughput Drug Screening. Journal of Virology, 2015, 89, 8428-8443.	3.4	27
23	Human and Host Species Transferrin Receptor 1 Use by North American Arenaviruses. Journal of Virology, 2014, 88, 9418-9428.	3.4	31
24	TIM-family Proteins Promote Infection of Multiple Enveloped Viruses through Virion-associated Phosphatidylserine. PLoS Pathogens, 2013, 9, e1003232.	4.7	288
25	Dual Host-Virus Arms Races Shape an Essential Housekeeping Protein. PLoS Biology, 2013, 11, e1001571.	5.6	116
26	An Antibody Recognizing the Apical Domain of Human Transferrin Receptor 1 Efficiently Inhibits the Entry of All New World Hemorrhagic Fever Arenaviruses. Journal of Virology, 2012, 86, 4024-4028.	3.4	47
27	Enhanced Recognition and Neutralization of HIV-1 by Antibody-Derived CCR5-Mimetic Peptide Variants. Journal of Virology, 2012, 86, 12417-12421.	3.4	24
28	Transferrin receptor 1 in the zoonosis and pathogenesis of New World hemorrhagic fever arenaviruses. Current Opinion in Microbiology, 2011, 14, 476-482.	5.1	46
29	A Tyrosine-Sulfated CCR5-Mimetic Peptide Promotes Conformational Transitions in the HIV-1 Envelope Glycoprotein. Journal of Virology, 2011, 85, 7563-7571.	3.4	18
30	Distinct Patterns of IFITM-Mediated Restriction of Filoviruses, SARS Coronavirus, and Influenza A Virus. PLoS Pathogens, 2011, 7, e1001258.	4.7	518
31	Structural basis for receptor recognition by New World hemorrhagic fever arenaviruses. Nature Structural and Molecular Biology, 2010, 17, 438-444.	8.2	125
32	Chapter 7 Tyrosine Sulfation of HIVâ€I Coreceptors and Other Chemokine Receptors. Methods in Enzymology, 2009, 461, 147-170.	1.0	31
33	A New World Primate Deficient in Tetherin-Mediated Restriction of Human Immunodeficiency Virus Type 1. Journal of Virology, 2009, 83, 8771-8780.	3.4	21
34	Host-Species Transferrin Receptor 1 Orthologs Are Cellular Receptors for Nonpathogenic New World Clade B Arenaviruses. PLoS Pathogens, 2009, 5, e1000358.	4.7	96
35	Influenza A Virus Neuraminidase Limits Viral Superinfection. Journal of Virology, 2008, 82, 4834-4843.	3.4	130
36	Protein evolution with an expanded genetic code. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 17688-17693.	7.1	138

#	Article	IF	CITATIONS
37	Receptor determinants of zoonotic transmission of New World hemorrhagic fever arenaviruses. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 2664-2669.	7.1	112
38	Transferrin receptor 1 is a cellular receptor for New World haemorrhagic fever arenaviruses. Nature, 2007, 446, 92-96.	27.8	374
39	Severe Acute Respiratory Syndrome Coronavirus Entry as a Target of Antiviral Therapies. Antiviral Therapy, 2007, 12, 639-650.	1.0	17
40	Tyrosine sulfate trapped by amber. Nature Biotechnology, 2006, 24, 1361-1362.	17.5	4
41	Conserved Receptor-binding Domains of Lake Victoria Marburgvirus and Zaire Ebolavirus Bind a Common Receptor. Journal of Biological Chemistry, 2006, 281, 15951-15958.	3.4	115
42	Animal Origins of the Severe Acute Respiratory Syndrome Coronavirus: Insight from ACE2-S-Protein Interactions. Journal of Virology, 2006, 80, 4211-4219.	3.4	247
43	A Tyrosine-sulfated Peptide Derived from the Heavy-chain CDR3 Region of an HIV-1-neutralizing Antibody Binds gp120 and Inhibits HIV-1 Infection. Journal of Biological Chemistry, 2006, 281, 28529-28535.	3.4	58
44	SARS Coronavirus, but Not Human Coronavirus NL63, Utilizes Cathepsin L to Infect ACE2-expressing Cells. Journal of Biological Chemistry, 2006, 281, 3198-3203.	3.4	328
45	Insights from the Association of SARS-CoV S-Protein with its Receptor, ACE2. Advances in Experimental Medicine and Biology, 2006, 581, 209-218.	1.6	20
46	SARS-CoV, But not HCoV-NL63, Utilizes Cathepsins to Infect Cells: Viral Entry. Advances in Experimental Medicine and Biology, 2006, 581, 335-338.	1.6	21
47	Sulphated tyrosines mediate association of chemokines and Plasmodium vivax Duffy binding protein with the Duffy antigen/receptor for chemokines (DARC). Molecular Microbiology, 2005, 55, 1413-1422.	2.5	136
48	Mapping binding residues in the Plasmodium vivax domain that binds Duffy antigen during red cell invasion. Molecular Microbiology, 2005, 55, 1423-1434.	2.5	104
49	Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2. EMBO Journal, 2005, 24, 1634-1643.	7.8	892
50	Efficient Replication of Severe Acute Respiratory Syndrome Coronavirus in Mouse Cells Is Limited by Murine Angiotensin-Converting Enzyme 2. Journal of Virology, 2004, 78, 11429-11433.	3.4	164
51	Structural basis of tyrosine sulfation and VH-gene usage in antibodies that recognize the HIV type 1 coreceptor-binding site on gp120. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 2706-2711.	7.1	278
52	A 193-Amino Acid Fragment of the SARS Coronavirus S Protein Efficiently Binds Angiotensin-converting Enzyme 2. Journal of Biological Chemistry, 2004, 279, 3197-3201.	3.4	618
53	Retroviruses Pseudotyped with the Severe Acute Respiratory Syndrome Coronavirus Spike Protein Efficiently Infect Cells Expressing Angiotensin-Converting Enzyme 2. Journal of Virology, 2004, 78, 10628-10635.	3.4	240
54	Potent neutralization of severe acute respiratory syndrome (SARS) coronavirus by a human mAb to S1 protein that blocks receptor association. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 2536-2541.	7.1	543

#	Article	IF	CITATIONS
55	Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature, 2003, 426, 450-454.	27.8	5,168
56	Tyrosine Sulfation of Human Antibodies Contributes to Recognition of the CCR5 Binding Region of HIV-1 gp120. Cell, 2003, 114, 161-170.	28.9	186
57	Sulfation of Tyrosine 174 in the Human C3a Receptor Is Essential for Binding of C3a Anaphylatoxin. Journal of Biological Chemistry, 2003, 278, 37902-37908.	3.4	47
58	Tyrosine-sulfated Peptides Functionally Reconstitute a CCR5 Variant Lacking a Critical Amino-terminal Region. Journal of Biological Chemistry, 2002, 277, 40397-40402.	3.4	54
59	The Role of Post-translational Modifications of the CXCR4 Amino Terminus in Stromal-derived Factor 1α Association and HIV-1 Entry. Journal of Biological Chemistry, 2002, 277, 29484-29489.	3.4	193
60	Sulfated Tyrosines Contribute to the Formation of the C5a Docking Site of the Human C5a Anaphylatoxin Receptor. Journal of Experimental Medicine, 2001, 193, 1059-1066.	8.5	83
61	Sialylated O-Glycans and Sulfated Tyrosines in the NH2-Terminal Domain of CC Chemokine Receptor 5 Contribute to High Affinity Binding of Chemokines. Journal of Experimental Medicine, 2001, 194, 1661-1674.	8.5	147
62	A Tyrosine-sulfated Peptide Based on the N Terminus of CCR5 Interacts with a CD4-enhanced Epitope of the HIV-1 gp120 Envelope Glycoprotein and Inhibits HIV-1 Entry. Journal of Biological Chemistry, 2000, 275, 33516-33521.	3.4	138
63	Apelin, the Natural Ligand of the Orphan Seven-Transmembrane Receptor APJ, Inhibits Human Immunodeficiency Virus Type 1 Entry. Journal of Virology, 2000, 74, 11972-11976.	3.4	87
64	Tyrosine Sulfation of the Amino Terminus of CCR5 Facilitates HIV-1 Entry. Cell, 1999, 96, 667-676.	28.9	658
65	Adaptation of a CCR5-Using, Primary Human Immunodeficiency Virus Type 1 Isolate for CD4-Independent Replication. Journal of Virology, 1999, 73, 8120-8126.	3.4	145
66	Chemokine receptors in HIV-1 and SIV infection. Archives of Pharmacal Research, 1998, 21, 634-639.	6.3	14
67	Structural interactions between chemokine receptors, gp120 Env and CD4. Seminars in Immunology, 1998, 10, 249-257.	5.6	53
68	A Tyrosine-Rich Region in the N Terminus of CCR5 Is Important for Human Immunodeficiency Virus Type 1 Entry and Mediates an Association between gp120 and CCR5. Journal of Virology, 1998, 72, 1160-1164.	3.4	187
69	Use of Murine CXCR-4 as a Second Receptor by Some T-Cell-Tropic Human Immunodeficiency Viruses. Journal of Virology, 1998, 72, 1652-1656.	3.4	23
70	The Orphan Seven-Transmembrane Receptor Apj Supports the Entry of Primary T-Cell-Line-Tropic and Dualtropic Human Immunodeficiency Virus Type 1. Journal of Virology, 1998, 72, 6113-6118.	3.4	192
71	Stabilization of Human Immunodeficiency Virus Type 1 Envelope Glycoprotein Trimers by Disulfide Bonds Introduced into the gp41 Glycoprotein Ectodomain. Journal of Virology, 1998, 72, 7620-7625.	3.4	70
72	Two Orphan Seven-Transmembrane Segment Receptors Which Are Expressed in CD4-positive Cells Support Simian Immunodeficiency Virus Infection. Journal of Experimental Medicine, 1997, 186, 405-411.	8.5	316

#	Article	IF	CITATIONS
73	CCR5 Levels and Expression Pattern Correlate with Infectability by Macrophage-tropic HIV-1, In Vitro. Journal of Experimental Medicine, 1997, 185, 1681-1692.	8.5	728
74	HIV-1 Entry and Macrophage Inflammatory Protein-1β-mediated Signaling Are Independent Functions of the Chemokine Receptor CCR5. Journal of Biological Chemistry, 1997, 272, 6854-6857.	3.4	186
75	CD4-Independent Binding of SIV gp120 to Rhesus CCR5. Science, 1997, 278, 1470-1473.	12.6	123
76	CCR3 and CCR5 are co-receptors for HIV-1 infection of microglia. Nature, 1997, 385, 645-649.	27.8	945
77	The β-Chemokine Receptors CCR3 and CCR5 Facilitate Infection by Primary HIV-1 Isolates. Cell, 1996, 85, 1135-1148.	28.9	2,432
78	The lymphocyte chemoattractant SDF-1 is a ligand for LESTR/fusin and blocks HIV-1 entry. Nature, 1996, 382, 829-833.	27.8	1,958
79	CD4-induced interaction of primary HIV-1 gp120 glycoproteins with the chemokine receptor CCR-5. Nature, 1996, 384, 179-183.	27.8	1,224
80	Angiotensin-Converting Enzyme 2, the Cellular Receptor for Severe Acute Respiratory Syndrome Coronavirus and Human Coronavirus NL63. , 0, , 147-156.		1