Matthias Gromeier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9354136/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Epigenetic STING silencing is developmentally conserved in gliomas and can be rescued by methyltransferase inhibition. Cancer Cell, 2022, 40, 439-440.	16.8	27
2	Very low mutation burden is a feature of inflamed recurrent glioblastomas responsive to cancer immunotherapy. Nature Communications, 2021, 12, 352.	12.8	77
3	Viral infection of cells within the tumor microenvironment mediates antitumor immunotherapy via selective TBK1-IRF3 signaling. Nature Communications, 2021, 12, 1858.	12.8	47
4	Phase I trial of intratumoral PVSRIPO in patients with unresectable, treatment-refractory melanoma. , 2021, 9, e002203.		44
5	Enterovirus 2A ^{pro} Cleavage of the YTHDF m ⁶ A Readers Implicates YTHDF3 as a Mediator of Type I Interferon-Driven JAK/STAT Signaling. MBio, 2021, 12, .	4.1	18
6	Safety and efficacy of murine PVSRIPO plus anti-PD-1 immune checkpoint inhibitor (ICI) in a melanoma tumor model Journal of Clinical Oncology, 2021, 39, 2560-2560.	1.6	1
7	OTME-16. Polio virotherapy of murine brain tumors causes microglia/macrophage proliferation and inflammation that is potentiated by immune checkpoint blockade. Neuro-Oncology Advances, 2021, 3, ii17-ii17.	0.7	0
8	Aryl Hydrocarbon Receptor Signaling Controls CD155 Expression on Macrophages and Mediates Tumor Immunosuppression. Journal of Immunology, 2021, 206, 1385-1394.	0.8	15
9	Harnessing virus tropism for dendritic cells for vaccine design. Current Opinion in Virology, 2020, 44, 73-80.	5.4	3
10	CReP mediates selective translation initiation at the endoplasmic reticulum. Science Advances, 2020, 6, eaba0745.	10.3	15
11	Genetically stable poliovirus vectors activate dendritic cells and prime antitumor CD8 T cell immunity. Nature Communications, 2020, 11, 524.	12.8	29
12	IMMU-18. INTERPLAY BETWEEN IDH1 AND ATRX MUTATIONS GOVERN INNATE IMMUNE RESPONSES IN GLIOMAS. Neuro-Oncology, 2020, 22, ii108-ii108.	1.2	0
13	TMOD-17. ONCOLYTIC POLIOVIRUS AS A PROBE FOR MECHANISMS OF IMMUNE RESISTANCE IN GLIOBLASTOMA. Neuro-Oncology, 2020, 22, ii231-ii231.	1.2	0
14	Improved efficacy against malignant brain tumors with EGFRwt/EGFRvIII targeting immunotoxin and checkpoint inhibitor combinations. , 2019, 7, 142.		31
15	ATIM-27. TUMOR MUTATIONAL BURDEN PREDICTS RESPONSE TO ONCOLYTIC POLIO/RHINOVIRUS RECOMBINANT (PVSRIPO) IN MALIGNANT GLIOMA PATIENTS: ASSESSMENT OF TRANSCRIPTIONAL AND IMMUNOLOGICAL CORRELATES. Neuro-Oncology, 2019, 21, vi7-vi7.	1.2	5
16	IMMU-34. ATRX MUTATIONS PREDICT RESPONSE TO INNATE BASED THERAPY IN GLIOMA. Neuro-Oncology, 2019, 21, vi126-vi126.	1.2	1
17	EXTH-51. GENETICALLY STABLE POLIOVIRUS VECTOR PLATFORM FOR DIPG IMMUNOTHERAPY. Neuro-Oncology, 2019, 21, vi93-vi93.	1.2	0
18	Synergistic antitumor effects of 9.2.27-PE38KDEL and ABT-737 in primary and metastatic brain tumors. PLoS ONE 2019, 14, e0210608	2.5	14

#	Article	IF	CITATIONS
19	Oncolytic polio/rhinovirus recombinant (PVSRIPO) against WHO grade IV malignant glioma (MG): Experience with retreatment of survivors from the phase I trial Journal of Clinical Oncology, 2019, 37, 2060-2060.	1.6	2
20	Recombinant Poliovirus for Cancer Immunotherapy. Annual Review of Medicine, 2018, 69, 289-299.	12.2	49
21	XIAP Regulation by MNK Links MAPK and NFκB Signaling to Determine an Aggressive Breast Cancer Phenotype. Cancer Research, 2018, 78, 1726-1738.	0.9	45
22	Regulation of Hypoxia-Inducible Factor 1 <i>α</i> during Hypoxia by DAP5-Induced Translation of PHD2. Molecular and Cellular Biology, 2018, 38, .	2.3	18
23	ATIM-27. INTRATUMORAL ADMINISTRATION OF AN ONCOLYTIC POLIO/RHINOVIRUS RECOMBINANT (PVSRIPO) IN MALIGNANT GLIOMA PATIENTS: ASSESSMENT OF MUTATIONAL RESPONSE CORRELATES. Neuro-Oncology, 2018, 20, vi7-vi7.	1.2	0
24	HGG-22. PHASE 1b STUDY POLIO VACCINE SABIN-RHINOVIRUS POLIOVIRUS (PVSRIPO) FOR RECURRENT MALIGNANT GLIOMA IN CHILDREN. Neuro-Oncology, 2018, 20, i93-i93.	1.2	2
25	Recurrent Clioblastoma Treated with Recombinant Poliovirus. New England Journal of Medicine, 2018, 379, 150-161.	27.0	570
26	Engineered Oncolytic Poliovirus PVSRIPO Subverts MDA5-Dependent Innate Immune Responses in Cancer Cells. Journal of Virology, 2018, 92, .	3.4	35
27	Ribosomal RACK1:Protein Kinase C <i>β</i> II Phosphorylates Eukaryotic Initiation Factor 4G1 at S1093 To Modulate Cap-Dependent and -Independent Translation Initiation. Molecular and Cellular Biology, 2018, 38, .	2.3	16
28	Ribosomal RACK1:Protein Kinase C <i>β</i> II Modulates Intramolecular Interactions between Unstructured Regions of Eukaryotic Initiation Factor 4G (eIF4G) That Control eIF4E and eIF3 Binding. Molecular and Cellular Biology, 2018, 38, .	2.3	21
29	Poliovirus Receptor (CD155) Expression in Pediatric Brain Tumors Mediates Oncolysis of Medulloblastoma and Pleomorphic Xanthoastrocytoma. Journal of Neuropathology and Experimental Neurology, 2018, 77, 696-702.	1.7	38
30	Recombinant oncolytic poliovirus combined with checkpoint blockade for breast cancer therapy Journal of Clinical Oncology, 2018, 36, e12641-e12641.	1.6	5
31	MNK Controls mTORC1:Substrate Association through Regulation of TELO2 Binding with mTORC1. Cell Reports, 2017, 18, 1444-1457.	6.4	55
32	MNK inversely regulates TELO2 vs. DEPTOR to control mTORC1 signaling. Molecular and Cellular Oncology, 2017, 4, e1306010.	0.7	12
33	Validation of an Immunohistochemistry Assay for Detection of CD155, the Poliovirus Receptor, in Malignant Gliomas. Archives of Pathology and Laboratory Medicine, 2017, 141, 1697-1704.	2.5	44
34	Cancer immunotherapy with recombinant poliovirus induces IFN-dominant activation of dendritic cells and tumor antigen–specific CTLs. Science Translational Medicine, 2017, 9, .	12.4	180
35	Dose finding study of the intratumoral administration of the oncolytic polio/rhinovirus recombinant (PVSRIPO) against WHO grade IV malignant glioma (MG) Journal of Clinical Oncology, 2017, 35, e13533.	1.6	0
36	Patient survival on the dose escalation phase of the Oncolytic Polio/Rhinovirus Recombinant (PVSRIPO) against WHO grade IV malignant glioma (MG) clinical trial compared to historical controls Journal of Clinical Oncology, 2016, 34, 2061-2061.	1.6	17

#	Article	IF	CITATIONS
37	Recombinant oncolytic poliovirus, PVSRIPO, has potent cytotoxic and innate inflammatory effects, mediating therapy in human breast and prostate cancer xenograft models. Oncotarget, 2016, 7, 79828-79841.	1.8	53
38	Cytotoxic and immunogenic mechanisms of recombinant oncolytic poliovirus. Current Opinion in Virology, 2015, 13, 81-85.	5.4	40
39	Oncolytic polio/rhinovirus recombinant (PVSRIPO) against recurrent glioblastoma (GBM): Optimal dose determination Journal of Clinical Oncology, 2015, 33, 2068-2068.	1.6	9
40	Oncolytic immunotherapy through tumor-specific translation and cytotoxicity of poliovirus. Discovery Medicine, 2015, 19, 359-65.	0.5	10
41	AT-21 * FINAL RESULTS OF A PHASE 1 TRIAL OF AN ONCOLYTIC POLIO/RHINOVIRUS RECOMBINANT (PVSRIPO) AGAINST RECURRENT GLIOBLASTOMA (GBM). Neuro-Oncology, 2014, 16, v13-v13.	1.2	4
42	Mitotic Phosphorylation of Eukaryotic Initiation Factor 4G1 (elF4G1) at Ser1232 by Cdk1:Cyclin B Inhibits elF4A Helicase Complex Binding with RNA. Molecular and Cellular Biology, 2014, 34, 439-451.	2.3	35
43	Mitogen-Activated Protein Kinase-Interacting Kinase Regulates mTOR/AKT Signaling and Controls the Serine/Arginine-Rich Protein Kinase-Responsive Type 1 Internal Ribosome Entry Site-Mediated Translation and Viral Oncolysis. Journal of Virology, 2014, 88, 13149-13160.	3.4	40
44	Induction of Viral, 7-Methyl-Guanosine Cap-Independent Translation and Oncolysis by Mitogen-Activated Protein Kinase-Interacting Kinase-Mediated Effects on the Serine/Arginine-Rich Protein Kinase. Journal of Virology, 2014, 88, 13135-13148.	3.4	45
45	Oncolytic polio virotherapy of cancer. Cancer, 2014, 120, 3277-3286.	4.1	67
46	Phase I study of the intratumoral administration of an oncolytic polio/rhinovirus recombinant (PVSRIPO) in recurrent glioblastoma (GBM) Journal of Clinical Oncology, 2014, 32, TPS2106-TPS2106.	1.6	1
47	Dynamic Regulation of the Translation Initiation Helicase Complex by Mitogenic Signal Transduction to Eukaryotic Translation Initiation Factor 4G. Molecular and Cellular Biology, 2013, 33, 937-946.	2.3	30
48	p38α Mitogen-Activated Protein Kinase Depletion and Repression of Signal Transduction to Translation Machinery by miR-124 and -128 in Neurons. Molecular and Cellular Biology, 2013, 33, 127-135.	2.3	39
49	Dose-finding and safety study of an oncolytic polio/rhinovirus recombinant against recurrent glioblastoma Journal of Clinical Oncology, 2013, 31, 2094-2094.	1.6	4
50	Attenuation of Neurovirulence, Biodistribution, and Shedding of a Poliovirus:Rhinovirus Chimera after Intrathalamic Inoculation in Macaca fascicularis. Journal of Virology, 2012, 86, 2750-2759.	3.4	48
51	Phosphorylation of Eukaryotic Translation Initiation Factor 4G1 (eIF4G1) by Protein Kinase Cα Regulates eIF4G1 Binding to Mnk1. Molecular and Cellular Biology, 2011, 31, 2947-2959.	2.3	57
52	Tissue Type-Specific Expression of the dsRNA-Binding Protein 76 and Genome-Wide Elucidation of Its Target mRNAs. PLoS ONE, 2010, 5, e11710.	2.5	22
53	MAPK Signal-integrating Kinase Controls Cap-independent Translation and Cell Type-specific Cytotoxicity of an Oncolytic Poliovirus. Molecular Therapy, 2010, 18, 1937-1946.	8.2	33
54	Regulation of Eukaryotic Initiation Factor 4E (eIF4E) Phosphorylation by Mitogen-Activated Protein Kinase Occurs through Modulation of Mnk1-eIF4G Interaction. Molecular and Cellular Biology, 2010, 30, 5160-5167.	2.3	111

MATTHIAS GROMEIER

#	Article	IF	CITATIONS
55	Preparing an oncolytic poliovirus recombinant for clinical application against glioblastoma multiforme. Cytokine and Growth Factor Reviews, 2010, 21, 197-203.	7.2	50
56	Evaluation of IRES-mediated, cell-type-specific cytotoxicity of poliovirus using a colorimetric cell proliferation assay. Journal of Virological Methods, 2009, 155, 44-54.	2.1	26
57	Identification of Gemin5 as a Novel 7-Methylguanosine Cap-Binding Protein. PLoS ONE, 2009, 4, e7030.	2.5	46
58	Immunotherapy against angiogenesis-associated targets: evidence and implications for the treatment of malignant glioma. Expert Review of Anticancer Therapy, 2008, 8, 717-732.	2.4	13
59	Activation of cap-independent translation by variant eukaryotic initiation factor 4G in vivo. Rna, 2008, 14, 2170-2182.	3.5	45
60	Recombinant Oncolytic Poliovirus Eliminates Glioma In Vivo Without Genetic Adaptation to a Pathogenic Phenotype. Molecular Therapy, 2008, 16, 1865-1872.	8.2	74
61	Poly(A)-binding protein is differentially required for translation mediated by viral internal ribosome entry sites. Rna, 2007, 13, 1582-1593.	3.5	31
62	Attenuation of Herpes Simplex Virus Neurovirulence with Picornavirus cis -Acting Genetic Elements. Journal of Virology, 2007, 81, 791-799.	3.4	9
63	Genetic Adaptation to Untranslated Region-Mediated Enterovirus Growth Deficits by Mutations in the Nonstructural Proteins 3AB and 3CD. Journal of Virology, 2007, 81, 8396-8405.	3.4	17
64	Oncolytic viruses for the treatment of malignant glioma. Expert Opinion on Therapeutic Patents, 2006, 16, 363-371.	5.0	1
65	The hepatitis C virus 3'-untranslated region or a poly(A) tract promote efficient translation subsequent to the initiation phase. Nucleic Acids Research, 2006, 34, 1293-1303.	14.5	80
66	The Double-Stranded RNA Binding Protein 76:NF45 Heterodimer Inhibits Translation Initiation at the Rhinovirus Type 2 Internal Ribosome Entry Site. Journal of Virology, 2006, 80, 6936-6942.	3.4	98
67	Competitive Translation Efficiency at the Picornavirus Type 1 Internal Ribosome Entry Site Facilitated by Viral cis and trans Factors. Journal of Virology, 2006, 80, 3310-3321.	3.4	35
68	Cell-Type-Specific Repression of Internal Ribosome Entry Site Activity by Double-Stranded RNA-Binding Protein 76. Journal of Virology, 2006, 80, 3147-3156.	3.4	69
69	The Polypyrimidine Tract Binding Protein Is Required for Efficient Picornavirus Gene Expression and Propagation. Journal of Virology, 2005, 79, 6172-6179.	3.4	45
70	Genetic Determinants of Cell Type-Specific Poliovirus Propagation in HEK 293 Cells. Journal of Virology, 2005, 79, 6281-6290.	3.4	47
71	Poliovirus receptor CD155-targeted oncolysis of glioma. Neuro-Oncology, 2004, 6, 208-217.	1.2	116
72	Treatment of Intracerebral Neoplasia and Neoplastic Meningitis with Regional Delivery of Oncolytic Recombinant Poliovirus. Clinical Cancer Research, 2004, 10, 4831-4838.	7.0	49

MATTHIAS GROMEIER

#	Article	IF	CITATIONS
73	Structural determinants of insert retention of poliovirus expression vectors with recombinant IRES elements. Virology, 2003, 311, 241-253.	2.4	17
74	Oncolytic Viruses for Cancer Therapy. American Journal of Cancer, 2003, 2, 313-323.	0.4	1
75	Activity of a type 1 picornavirus internal ribosomal entry site is determined by sequences within the 3' nontranslated region. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 15125-15130.	7.1	53
76	Genetically Stable Picornavirus Expression Vectors with Recombinant Internal Ribosomal Entry Sites. Journal of Virology, 2002, 76, 8966-8972.	3.4	11
77	Expression of the Human Poliovirus Receptor/CD155 Gene Is Activated by Sonic Hedgehog. Journal of Biological Chemistry, 2002, 277, 25697-25702.	3.4	65
78	Expression of the Human Poliovirus Receptor/CD155 Gene during Development of the Central Nervous System: Implications for the Pathogenesis of Poliomyelitis. Virology, 2000, 273, 248-257.	2.4	75
79	Dual Stem Loops within the Poliovirus Internal Ribosomal Entry Site Control Neurovirulence. Journal of Virology, 1999, 73, 958-964.	3.4	146
80	The relation of prophylactic inoculations to the onset of poliomyelitis. , 1999, 9, 219-226.		4
81	Poliovirus and its cellular receptor: a molecular genetic dissection of a virus/receptor affinity interaction. , 1998, 11, 2-9.		11
82	Mechanism of Injury-Provoked Poliomyelitis. Journal of Virology, 1998, 72, 5056-5060.	3.4	104
83	A Small Yeast RNA Blocks Hepatitis C Virus Internal Ribosome Entry Site (HCV IRES)-Mediated Translation and Inhibits Replication of a Chimeric Poliovirus under Translational Control of the HCV IRES Element. Journal of Virology, 1998, 72, 5638-5647.	3.4	39
84	Determinants of Poliovirus Pathogenesis. , 0, , 367-379.		11
85	PKR Binds Enterovirus IRESs, Displaces Host Translation Factors, and Impairs Viral Translation to Enable Innate Antiviral Signaling. MBio, 0, , .	4.1	4