
Andrew Burgess

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9353605/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A non-genetic, cell cycle-dependent mechanism of platinum resistance in lung adenocarcinoma. ELife, 2021, 10, .	6.0	14
2	Intravital imaging technology guides FAK-mediated priming in pancreatic cancer precision medicine according to Merlin status. Science Advances, 2021, 7, eabh0363.	10.3	23
3	Cep55 regulation of PI3K/Akt signaling is required for neocortical development and ciliogenesis. PLoS Genetics, 2021, 17, e1009334.	3.5	4
4	Multiple interaction nodes define the postreplication repair response to UVâ€induced DNA damage that is defective in melanomas and correlated with UV signature mutation load. Molecular Oncology, 2020, 14, 22-41.	4.6	5
5	Cep55 overexpression promotes genomic instability and tumorigenesis in mice. Communications Biology, 2020, 3, 593.	4.4	17
6	Cyclin E2 Promotes Whole Genome Doubling in Breast Cancer. Cancers, 2020, 12, 2268.	3.7	15
7	YB-1 Knockdown Inhibits the Proliferation of Mesothelioma Cells through Multiple Mechanisms. Cancers, 2020, 12, 2285.	3.7	8
8	Breathing New Life into the Mechanisms of Platinum Resistance in Lung Adenocarcinoma. Frontiers in Cell and Developmental Biology, 2020, 8, 305.	3.7	9
9	Rapid Intestinal Uptake and Targeted Delivery to the Liver Endothelium Using Orally Administered Silver Sulfide Quantum Dots. ACS Nano, 2020, 14, 1492-1507.	14.6	32
10	Trp53 and Rb1 regulate autophagy and ligand-dependent Hedgehog signaling. Journal of Clinical Investigation, 2020, 130, 4006-4018.	8.2	10
11	Analysis of pulsed cisplatin signalling dynamics identifies effectors of resistance in lung adenocarcinoma. ELife, 2020, 9, .	6.0	7
12	SnapShot: S-Phase Entry and Exit. Cell, 2019, 179, 802-802.e1.	28.9	2
13	Why Be One Protein When You Can Affect Many? The Multiple Roles of YB-1 in Lung Cancer and Mesothelioma. Frontiers in Cell and Developmental Biology, 2019, 7, 221.	3.7	26
14	Label free, quantitative single-cell fate tracking of time-lapse movies. MethodsX, 2019, 6, 2468-2475.	1.6	13
15	Evolutionary Divergence of Enzymatic Mechanisms for Tubulin Detyrosination. Cell Reports, 2019, 29, 4159-4171.e6.	6.4	17
16	The tumor suppressor Hic1 maintains chromosomal stability independent of Tp53. Oncogene, 2018, 37, 1939-1948.	5.9	18
17	Tailored first-line and second-line CDK4-targeting treatment combinations in mouse models of pancreatic cancer. Gut, 2018, 67, 2142-2155.	12.1	100
18	P2.06-32 YB-1 - A Key Factor in Mesothelioma Aggressive Growth and Behaviour. Journal of Thoracic Oncology, 2018, 13, S755.	1.1	0

ANDREW BURGESS

#	Article	IF	CITATIONS
19	The Oncogenic Functions of MASTL Kinase. Frontiers in Cell and Developmental Biology, 2018, 6, 162.	3.7	26
20	Inhibition of activin signaling in lung adenocarcinoma increases the therapeutic index of platinum chemotherapy. Science Translational Medicine, 2018, 10, .	12.4	32
21	MASTL overexpression promotes chromosome instability and metastasis in breast cancer. Oncogene, 2018, 37, 4518-4533.	5.9	45
22	The E3 ubiquitin ligase UBR5 regulates centriolar satellite stability and primary cilia. Molecular Biology of the Cell, 2018, 29, 1542-1554.	2.1	27
23	SnapShot: Phosphoregulation of Mitosis. Cell, 2017, 169, 1358-1358.e1.	28.9	12
24	The role of canonical and non-canonical Hedgehog signaling in tumor progression in a mouse model of small cell lung cancer. Oncogene, 2017, 36, 5544-5550.	5.9	52
25	Transient tissue priming via ROCK inhibition uncouples pancreatic cancer progression, sensitivity to chemotherapy, and metastasis. Science Translational Medicine, 2017, 9, .	12.4	208
26	Ensa controls S-phase length by modulating Treslin levels. Nature Communications, 2017, 8, 206.	12.8	48
27	Andy's Algorithms: new automated digital image analysis pipelines for FIJI. Scientific Reports, 2017, 7, 15717.	3.3	45
28	The role of MDM2 and MDM4 in breast cancer development and prevention. Journal of Molecular Cell Biology, 2017, 9, 53-61.	3.3	56
29	Clinical Overview of MDM2/X-Targeted Therapies. Frontiers in Oncology, 2016, 6, 7.	2.8	266
30	PP1 initiates the dephosphorylation of MASTL, triggering mitotic exit and bistability in human cells. Journal of Cell Science, 2016, 129, 1340-54.	2.0	44
31	Mechanisms regulating phosphatase specificity and the removal of individual phosphorylation sites during mitotic exit. BioEssays, 2016, 38, S24-32.	2.5	26
32	Cdc25 Family Phosphatases in Cancer. , 2016, , 283-306.		1
33	Mechanisms regulating phosphatase specificity and the removal of individual phosphorylation sites during mitotic exit. Inside the Cell, 2016, 1, 27-35.	0.4	0
34	Dataset from the global phosphoproteomic mapping of early mitotic exit in human cells. Data in Brief, 2015, 5, 45-52.	1.0	8
35	Global Phosphoproteomic Mapping of Early Mitotic Exit in Human Cells Identifies Novel Substrate Dephosphorylation Motifs. Molecular and Cellular Proteomics, 2015, 14, 2194-2212.	3.8	63
36	Degrading Claspin away with Cdh1 and Cyclin A. Cell Cycle, 2015, 14, 171-171.	2.6	0

ANDREW BURGESS

#	Article	IF	CITATIONS
37	Cyclin E2 is the predominant E-cyclin associated with NPAT in breast cancer cells. Cell Division, 2015, 10, 1.	2.4	17
38	Partial inhibition of Cdk1 in G ₂ phase overrides the SAC and decouples mitotic events. Cell Cycle, 2014, 13, 1400-1412.	2.6	773
39	Stressing Mitosis to Death. Frontiers in Oncology, 2014, 4, 140.	2.8	39
40	Cyclin E2 induces genomic instability by mechanisms distinct from cyclin E1. Cell Cycle, 2013, 12, 606-617.	2.6	47
41	Role of endoplasmic reticulum stress induction by the plant toxin, persin, in overcoming resistance to the apoptotic effects of tamoxifen in human breast cancer cells. British Journal of Cancer, 2013, 109, 3034-3041.	6.4	14
42	A UVR-Induced G2-Phase Checkpoint Response to ssDNA Gaps Produced by Replication Fork Bypass of Unrepaired Lesions Is Defective in Melanoma. Journal of Investigative Dermatology, 2012, 132, 1681-1688.	0.7	16
43	Quantitative Live Imaging of Endogenous DNA Replication in Mammalian Cells. PLoS ONE, 2012, 7, e45726.	2.5	66
44	Characterization of the Mechanisms Controlling Greatwall Activity. Molecular and Cellular Biology, 2011, 31, 2262-2275.	2.3	70
45	Abstract 4197: A DNA damage checkpoint response to unrepaired ultraviolet radiation-induced lesions which is defective in melanoma. , 2011, , .		0
46	RSK2 is a kinetochore-associated protein that participates in the spindle assembly checkpoint. Oncogene, 2010, 29, 3566-3574.	5.9	11
47	R43 Caractérisation des sites de phosphorylation de la nouvelle kinase Greatwall et leur implication dans le contrÃ1e de la progression mitotique. Bulletin Du Cancer, 2010, 97, S32.	1.6	0
48	Constant regulation of both the MPF amplification loop and the Greatwall-PP2A pathway is required for metaphase II arrest and correct entry into the first embryonic cell cycle. Journal of Cell Science, 2010, 123, 2281-2291.	2.0	76
49	The Substrate of Greatwall Kinase, Arpp19, Controls Mitosis by Inhibiting Protein Phosphatase 2A. Science, 2010, 330, 1673-1677.	12.6	377
50	Loss of human Greatwall results in G2 arrest and multiple mitotic defects due to deregulation of the cyclin B-Cdc2/PP2A balance. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 12564-12569.	7.1	652
51	Greatwall maintains mitosis through regulation of PP2A. EMBO Journal, 2009, 28, 2786-2793.	7.8	195
52	Chfr interacts and colocalizes with TCTP to the mitotic spindle. Oncogene, 2008, 27, 5554-5566.	5.9	55
53	Pin1 stabilizes Emi1 during G2 phase by preventing its association with SCF βtrcp. EMBO Reports, 2007, 8, 91-98.	4.5	45
54	Inhibition of S/G2 Phase CDK4 Reduces Mitotic Fidelity*. Journal of Biological Chemistry, 2006, 281, 9987-9995.	3.4	29

ANDREW BURGESS

#	Article	IF	CITATIONS
55	Inhibition of S/G2 phase CDK4 reduces mitotic fidelity. Melanoma Research, 2006, 16, S5.	1.2	Ο
56	Exploiting Novel Cell Cycle Targets in the Development of Anticancer Agents. Current Cancer Drug Targets, 2005, 5, 85-102.	1.6	18
57	The EBNA- 3 gene family proteins disrupt the G2/M checkpoint. Oncogene, 2004, 23, 1342-1353.	5.9	56
58	Histone deacetylase inhibitors specifically kill nonproliferating tumour cells. Oncogene, 2004, 23, 6693-6701.	5.9	129
59	Defining the Chemotherapeutic Targets of Histone Deacetylase Inhibitors. Annals of the New York Academy of Sciences, 2004, 1030, 627-635.	3.8	8
60	Mechanism of Mitosis-specific Activation of MEK1. Journal of Biological Chemistry, 2003, 278, 16747-16754.	3.4	49
61	Tumor cellâ€specific cytotoxicity by targeting cell cycle checkpoints. FASEB Journal, 2003, 17, 1-21.	0.5	132
62	Histone Hyperacetylation Induced by Histone Deacetylase Inhibitors Is Not Sufficient to Cause Growth Inhibition in Human Dermal Fibroblasts. Journal of Biological Chemistry, 2001, 276, 22491-22499.	3.4	58
63	Up-regulation of p21(WAF1/CIP1) by histone deacetylase inhibitors reduces their cytotoxicity. Molecular Pharmacology, 2001, 60, 828-37.	2.3	104
64	Histone Deacetylase Inhibitors Trigger a G2 Checkpoint in Normal Cells That Is Defective in Tumor Cells. Molecular Biology of the Cell, 2000, 11, 2069-2083.	2.1	246
65	MASTL Facilitates Mitotic Progression. Reactome - A Curated Knowledgebase of Biological Pathways, 0, 43, .	0.0	0
66	Mechanisms underlying uncontrolled genome doubling in breast cancer. Oncology Abstracts, 0, , .	0.0	0