Moon Kee Choi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9353350/publications.pdf

Version: 2024-02-01

36 3,587 23 36 papers citations h-index g-index

37 37 5515
all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Materials and design strategies for stretchable electroluminescent devices. Nanoscale Horizons, 2022, 7, 801-821.	8.0	22
2	Solution-Processed Hole-Doped SnSe Thermoelectric Thin-Film Devices for Low-Temperature Power Generation. ACS Energy Letters, 2022, 7, 2092-2101.	17.4	17
3	Stretchable conductive nanocomposites and their applications in wearable devices. Applied Physics Reviews, 2022, 9, .	11.3	27
4	Toward Full-Color Electroluminescent Quantum Dot Displays. Nano Letters, 2021, 21, 26-33.	9.1	103
5	3D Antidrying Antifreezing Artificial Skin Device with Selfâ€Healing and Touch Sensing Capability. Macromolecular Rapid Communications, 2021, 42, e2100011.	3.9	9
6	Material Design for 3D Multifunctional Hydrogel Structure Preparation. Macromolecular Materials and Engineering, 2021, 306, 2100007.	3.6	5
7	Solutionâ€Processed Stretchable Ag ₂ S Semiconductor Thin Films for Wearable Selfâ€Powered Nonvolatile Memory. Advanced Materials, 2021, 33, e2100066.	21.0	30
8	Polymer-Assisted High-Resolution Printing Techniques for Colloidal Quantum Dots. Macromolecular Research, 2021, 29, 391-401.	2.4	17
9	Memory Devices: Solutionâ€Processed Stretchable Ag ₂ S Semiconductor Thin Films for Wearable Selfâ€Powered Nonvolatile Memory (Adv. Mater. 23/2021). Advanced Materials, 2021, 33, 2170181.	21.0	O
10	An aquatic-vision-inspired camera based on a monocentric lens and a silicon nanorod photodiode array. Nature Electronics, 2020, 3, 546-553.	26.0	100
11	Materials engineering, processing, and device application of hydrogel nanocomposites. Nanoscale, 2020, 12, 10456-10473.	5.6	52
12	Liquid Pockets Encapsulated in MoS2 Liquid Cells. Microscopy and Microanalysis, 2019, 25, 1406-1407.	0.4	3
13	MoS ₂ Liquid Cell Electron Microscopy Through Clean and Fast Polymer-Free MoS ₂ Transfer. Nano Letters, 2019, 19, 1788-1795.	9.1	45
14	Flexible quantum dot light-emitting diodes for next-generation displays. Npj Flexible Electronics, 2018, 2 , .	10.7	261
15	Extremely Vivid, Highly Transparent, and Ultrathin Quantum Dot Lightâ€Emitting Diodes. Advanced Materials, 2018, 30, 1703279.	21.0	157
16	Fully Stretchable Optoelectronic Sensors Based on Colloidal Quantum Dots for Sensing Photoplethysmographic Signals. ACS Nano, 2017, 11, 5992-6003.	14.6	115
17	Wearable Force Touch Sensor Array Using a Flexible and Transparent Electrode. Advanced Functional Materials, 2017, 27, 1605286.	14.9	151

Flexible Displays: Ultrathin Quantum Dot Display Integrated with Wearable Electronics (Adv. Mater.) Tj ETQq0 0 0 rgBT/Overlock 10 Tf 5

#	Article	IF	CITATIONS
19	Ultrathin Quantum Dot Display Integrated with Wearable Electronics. Advanced Materials, 2017, 29, 1700217.	21.0	187
20	Human eye-inspired soft optoelectronic device using high-density MoS2-graphene curved image sensor array. Nature Communications, 2017, 8, 1664.	12.8	381
21	Designed Assembly and Integration of Colloidal Nanocrystals for Device Applications. Advanced Materials, 2016, 28, 1176-1207.	21.0	211
22	Epidermal Electronics: Cephalopodâ€Inspired Miniaturized Suction Cups for Smart Medical Skin (Adv.) Tj ETQq0	0 0 rgBT /	Overlock 10
23	Nanomaterialâ€Based Soft Electronics for Healthcare Applications. ChemNanoMat, 2016, 2, 1006-1017.	2.8	65
24	Cephalopodâ€Inspired Miniaturized Suction Cups for Smart Medical Skin. Advanced Healthcare Materials, 2016, 5, 80-87.	7.6	175
25	Colloidal Synthesis of Uniformâ€Sized Molybdenum Disulfide Nanosheets for Waferâ€Scale Flexible Nonvolatile Memory. Advanced Materials, 2016, 28, 9326-9332.	21.0	151
26	Thermally Controlled, Patterned Graphene Transfer Printing for Transparent and Wearable Electronic/Optoelectronic System. Advanced Functional Materials, 2015, 25, 7109-7118.	14.9	155
27	Multifunctional Cell-Culture Platform for Aligned Cell Sheet Monitoring, Transfer Printing, and Therapy. ACS Nano, 2015, 9, 2677-2688.	14.6	72
28	Wearable red–green–blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing. Nature Communications, 2015, 6, 7149.	12.8	536
29	Route to the Smallest Doped Semiconductor: Mn ²⁺ -Doped (CdSe) ₁₃ Clusters. Journal of the American Chemical Society, 2015, 137, 12776-12779.	13.7	91
30	Efficiency Improvement of Organic Solar Cells by Tuning Hole Transport Layer with Germanium Oxide. Journal of Nanoscience and Nanotechnology, 2012, 12, 623-628.	0.9	4
31	n-Type Nanostructured Thermoelectric Materials Prepared from Chemically Synthesized Ultrathin Bi ₂ Te ₃ Nanoplates. Nano Letters, 2012, 12, 640-647.	9.1	239
32	Dimensionâ€Controlled Synthesis of CdS Nanocrystals: From 0D Quantum Dots to 2D Nanoplates. Small, 2012, 8, 2394-2402.	10.0	99
33	Fabrication of a hierarchical structure by oxygen plasma etching of a photocured microstructure containing a silicon moiety. Journal of Materials Chemistry, 2011, 21, 14936.	6.7	12
34	Simple Fabrication of Asymmetric High-Aspect-Ratio Polymer Nanopillars by Reusable AAO Templates. Langmuir, 2011, 27, 2132-2137.	3.5	57
35	Self-modulating polymer resist patterns in pressure-assisted capillary force lithography. Journal of Colloid and Interface Science, 2010, 346, 476-482.	9.4	8
36	Face Selection in One-Step Bending of Janus Nanopillars. Langmuir, 2010, 26, 9198-9201.	3.5	23