Federico Capasso

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9352598/publications.pdf

Version: 2024-02-01

319 papers

47,711 citations

88 h-index 215

g-index

324 all docs

324 docs citations

times ranked

324

19076 citing authors

#	Article	IF	CITATIONS
1	Roadmap on multimode light shaping. Journal of Optics (United Kingdom), 2022, 24, 013001.	2.2	41
2	Introducing Berry phase gradients along the optical path via propagation-dependent polarization transformations. Nanophotonics, 2022, 11, 713-725.	6.0	14
3	A quantum cascade laser-pumped molecular laser tunable over 1 THz. APL Photonics, 2022, 7, .	5.7	8
4	Metasurface-based bijective illumination collection imaging provides high-resolution tomography in three dimensions. Nature Photonics, 2022, 16, 203-211.	31.4	24
5	Multi-line lasing in the broadly tunable ammonia quantum cascade laser pumped molecular laser. Applied Physics Letters, 2022, 120, 081108.	3.3	5
6	Imaging polarimetry through metasurface polarization gratings. Optics Express, 2022, 30, 9389.	3.4	34
7	Adjoint-optimized metasurfaces for compact mode-division multiplexing. ACS Photonics, 2022, 9, 929-937.	6.6	11
8	Laser Frequency Combs with Fast Gain Recovery: Physics and Applications. Laser and Photonics Reviews, 2022, 16, .	8.7	16
9	Tunable structured light with flat optics. Science, 2022, 376, eabi6860.	12.6	147
10	Diamond mirrors for high-power continuous-wave lasers. Nature Communications, 2022, 13, 2610.	12.8	9
11	Inverse design enables large-scale high-performance meta-optics reshaping virtual reality. Nature Communications, 2022, 13, 2409.	12.8	82
12	Empowering Metasurfaces with Inverse Design: Principles and Applications. ACS Photonics, 2022, 9, 2178-2192.	6.6	53
13	Gigahertz free-space electro-optic modulators based on Mie resonances. Nature Communications, 2022, 13, .	12.8	63
14	Measurements of the magneto-optical properties of thin-film EuS at room temperature in the visible spectrum. Applied Physics Letters, 2022, 120, .	3.3	2
15	Jones Matrix Holography with Metasurfaces. , 2021, , .		1
16	Compact, low threshold methyl fluoride terahertz laser pumped by a quantum cascade laser., 2021,,.		0
17	Compact Incoherent Spatial Frequency Filtering Enabled by Metasurface Engineering. , 2021, , .		0
18	Non-local multifunctional metasurfaces and their external cavity laser application. , 2021, , .		О

#	Article	IF	CITATIONS
19	Evolution of Total Angular Momentum and Berry Phase in 3D Structured Light., 2021,,.		O
20	Metasurface optics for on-demand polarization transformations along the optical path. Nature Photonics, 2021, 15, 287-296.	31.4	212
21	Will flat optics appear in everyday life anytime soon?. Applied Physics Letters, 2021, 118, .	3.3	44
22	Reply to: Reconsidering metasurface lasers. Nature Photonics, 2021, 15, 339-340.	31.4	1
23	Unifying Frequency Combs in Active and Passive Cavities: Temporal Solitons in Externally Driven Ring Lasers. Physical Review Letters, 2021, 126, 173903.	7.8	31
24	Multifunctional wide-angle optics and lasing based on supercell metasurfaces. Nature Communications, 2021, 12, 3787.	12.8	66
25	Nonlinear Dynamics in Semiconductor Ring Lasers: From Phase Turbulence to Solitons. , 2021, , .		0
26	Low RF line width frequency-modulated and amplitude-modulated combs. , 2021, , .		0
27	Electrical injection-locking dynamics of a frequency-modulated comb. , 2021, , .		0
28	Actively mode-locked pulses from a mid-IR quantum cascade laser. , 2021, , .		0
29	Engineering phase and polarization singularity sheets. Nature Communications, 2021, 12, 4190.	12.8	28
30	Jones matrix holography with metasurfaces. Science Advances, 2021, 7, .	10.3	67
31	Spectrally resolved linewidth enhancement factor of a semiconductor frequency comb. Optica, 2021, 8, 1227.	9.3	11
32	Defect-engineered ring laser harmonic frequency combs. Optica, 2021, 8, 1277.	9.3	17
33	Coherent Raman scattering imaging with a near-infrared achromatic metalens. APL Photonics, 2021, 6, 096107.	5.7	8
34	Meta-optics achieves RGB-achromatic focusing for virtual reality. Science Advances, 2021, 7, .	10.3	142
35	High-purity orbital angular momentum states from a visible metasurface laser. , 2021, , .		0
36	Thin-film lithium niobate integrated circuits for terahertz generation and detection., 2021,,.		0

#	Article	IF	CITATIONS
37	Extreme Optics: Inverse Design and Experimental Realizations of Ultra-Large-Area Complex Meta-Optics. , 2021, , .		O
38	Electro-optic spatial light modulator from an engineered organic layer. Nature Communications, 2021, 12, 5928.	12.8	58
39	A High Aspect Ratio Inverse-Designed Holey Metalens. Nano Letters, 2021, 21, 8642-8649.	9.1	38
40	Structuring total angular momentum of light along the propagation direction with polarization-controlled meta-optics. Nature Communications, 2021, 12, 6249.	12.8	59
41	New approaches to polarization optics and structured light with metasurfaces. , $2021, , .$		0
42	Widely tunable quantum cascade laser-pumped methyl fluoride terahertz laser., 2021,,.		0
43	Polarization in diffractive optics and metasurfaces. Advances in Optics and Photonics, 2021, 13, 836.	25.5	48
44	Generalized polarization transformations with metasurfaces. Optics Express, 2021, 29, 39065.	3.4	8
45	Compact Incoherent Spatial Frequency Filtering and Image Differentiation Enabled by Metalens Engineering. , 2021, , .		0
46	Flat Optics Based on Metasurfaces: From Components to Cameras. , 2021, , .		0
47	Slow light nanocoatings for ultrashort pulse compression. Nature Communications, 2021, 12, 6518.	12.8	12
48	Global and localised temporal structures in driven ring quantum cascade lasers. Chaos, Solitons and Fractals, 2021, 153, 111537.	5.1	5
49	Enhancing the modal purity of orbital angular momentum photons. APL Photonics, 2020, 5, 070802.	5.7	28
50	Mode-locked short pulses from an $8\hat{A}\hat{I}\sqrt[4]{4}$ m wavelength semiconductor laser. Nature Communications, 2020, 11, 5788.	12.8	37
51	Optical properties of metasurfaces infiltrated with liquid crystals. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 20390-20396.	7.1	66
52	Remote structuring of near-field landscapes. Science, 2020, 369, 436-440.	12.6	17
53	Continuous angle-tunable birefringence with freeform metasurfaces for arbitrary polarization conversion. Science Advances, 2020, 6, eaba3367.	10.3	143
54	Frequency combs induced by phase turbulence. Nature, 2020, 582, 360-364.	27.8	87

#	Article	IF	CITATIONS
55	Flat optics with dispersion-engineered metasurfaces. Nature Reviews Materials, 2020, 5, 604-620.	48.7	411
56	Ultrahigh Angular Selectivity of Disorder-Engineered Metasurfaces. ACS Photonics, 2020, 7, 991-1000.	6.6	15
57	In-Phase and Anti-Phase Synchronization in a Laser Frequency Comb. Physical Review Letters, 2020, 124, 023901.	7.8	61
58	Hot-Carrier Extraction in Nanowire-Nanoantenna Photovoltaic Devices. Nano Letters, 2020, 20, 4064-4072.	9.1	21
59	High-purity orbital angular momentum states from a visible metasurface laser. Nature Photonics, 2020, 14, 498-503.	31.4	230
60	Improving the light collection efficiency of silicon photomultipliers through the use of metalenses. Journal of Instrumentation, 2020, 15, P11021-P11021.	1.2	6
61	Purity and efficiency of hybrid orbital angular momentum-generating metasurfaces. Journal of Nanophotonics, 2020, 14, 1.	1.0	13
62	Shaping harmonic frequency combs in ring injection lasers by defect engineering. , 2020, , .		2
63	Soliton dynamics of ring quantum cascade lasers with injected signal. Nanophotonics, 2020, 10, 195-207.	6.0	21
64	40â€3: Invited Paper: A Large RGBâ€achromatic Metalens for Virtual/Augmented Reality Applications. Digest of Technical Papers SID International Symposium, 2020, 51, 575-578.	0.3	0
65	Room Temperature Compact Terahertz Laser Tunable over 1 THz., 2020,,.		0
66	A metalens-based virtual reality (VR) / augmented reality (AR) system. , 2020, , .		0
67	Total Angular Momentum Management of Three Dimensional Vortices with a Single Plate. , 2020, , .		0
68	High Q-factor resonators and nanoantennas based on phonon polaritons in van der Waals materials. , 2020, , .		1
69	Tunable quantum-cascade laser pumped molecular lasers for terahertz imaging. , 2020, , .		0
70	Longitudinally Variable Polarization Optics. , 2020, , .		0
71	Designer Structured Light with Metasurfaces. , 2020, , .		0
72	Low Voltage Imaging of Quantum Materials Imaging the Surface Plasmon Polaritons in Chalcogenides. Microscopy and Microanalysis, 2019, 25, 460-461.	0.4	0

#	Article	IF	Citations
73	Matrix Fourier optics enables a compact full-Stokes polarization camera. Science, 2019, 365, .	12.6	471
74	Using the Belinfante momentum to retrieve the polarization state of light inside waveguides. Scientific Reports, 2019, 9, 14879.	3.3	7
75	Widely tunable compact terahertz gas lasers. Science, 2019, 366, 856-860.	12.6	69
76	All-Glass, Large Metalens at Visible Wavelength Using Deep-Ultraviolet Projection Lithography. Nano Letters, 2019, 19, 8673-8682.	9.1	165
77	Dielectric multi-momentum meta-transformer in the visible. Nature Communications, 2019, 10, 4789.	12.8	82
78	Compact single-shot metalens depth sensors inspired by eyes of jumping spiders. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 22959-22965.	7.1	105
79	Polariton nanophotonics using phase-change materials. Nature Communications, 2019, 10, 4487.	12.8	106
80	A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures. Nature Communications, 2019, 10, 355.	12.8	297
81	Frequency-Modulated Combs Obey a Variational Principle. Physical Review Letters, 2019, 122, 253901.	7.8	23
82	Excitation of Strong Localized Surface Plasmon Resonances in Highly Metallic Titanium Nitride Nano-Antennas for Stable Performance at Elevated Temperatures. ACS Applied Nano Materials, 2019, 2, 3444-3452.	5.0	27
83	Imaging Performance of Polarization-Insensitive Metalenses. ACS Photonics, 2019, 6, 1493-1499.	6.6	57
84	Radio frequency transmitter based on a laser frequency comb. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 9181-9185.	7.1	26
85	Versatile total angular momentum generation using cascaded J-plates. Optics Express, 2019, 27, 7469.	3.4	39
86	Light and Microwaves in Laser Frequency Combs: An Interplay of Spatiotemporal Phenomena. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25, 1-12.	2.9	12
87	Engineering phonon polaritons in van der Waals heterostructures to enhance in-plane optical anisotropy. Science Advances, 2019, 5, eaau7171.	10.3	71
88	Dispersion Engineered Metasurfaces for Broadband Achromatic Optics. , 2019, , .		0
89	Mitigating Chromatic Dispersion with Hybrid Optical Metasurfaces. Advanced Materials, 2019, 31, e1805555.	21.0	37
90	Compact Aberrationâ€Corrected Spectrometers in the Visible Using Dispersionâ€Tailored Metasurfaces. Advanced Optical Materials, 2019, 7, 1801144.	7.3	52

#	Article	IF	Citations
91	Concepts in quantum state tomography and classical implementation with intense light: a tutorial. Advances in Optics and Photonics, 2019, 11 , 67 .	25.5	107
92	Large-area, single material metalens in the visible: An approach for mass-production using conventional semiconductor manufacturing techniques. , 2019 , , .		2
93	Engineering metasurface dispersion for achromatic optics. , 2019, , .		0
94	Polariton Meta-Optics with Phase-Change Materials. , 2019, , .		0
95	Reconfigurable mid-infrared optical elements using phase change materials. , 2019, , .		1
96	Dynamic metasurface lens based on MEMS technology. APL Photonics, 2018, 3, .	5.7	120
97	Single-Layer Metasurface with Controllable Multiwavelength Functions. Nano Letters, 2018, 18, 2420-2427.	9.1	165
98	Giant intrinsic chiro-optical activity in planar dielectric nanostructures. Light: Science and Applications, 2018, 7, 17158-17158.	16.6	234
99	Adaptive metalenses with simultaneous electrical control of focal length, astigmatism, and shift. Science Advances, 2018, 4, eaap9957.	10.3	275
100	The future and promise of flat optics: a personal perspective. Nanophotonics, 2018, 7, 953-957.	6.0	113
101	Topology-Optimized Multilayered Metaoptics. Physical Review Applied, 2018, 9, .	3.8	129
102	Watt-level widely tunable single-mode emission by injection-locking of a multimode Fabry-Perot quantum cascade laser. Applied Physics Letters, 2018, 112, .	3.3	5
103	Guided Modes of Anisotropic van der Waals Materials Investigated by near-Field Scanning Optical Microscopy. ACS Photonics, 2018, 5, 1196-1201.	6.6	15
104	Mid-infrared two-photon absorption in an extended-wavelength InGaAs photodetector. Applied Physics Letters, 2018, 112, .	3.3	33
105	A broadband achromatic metalens for focusing and imaging in the visible. Nature Nanotechnology, 2018, 13, 220-226.	31.5	1,190
106	Focus Point on Complex Photonics. European Physical Journal Plus, 2018, 133, 1.	2.6	0
107	Negative Refraction Based on Guided-Mode Assisted Meta-Gratings. , 2018, , .		0
108	Broadband Achromatic Metasurface-Refractive Optics. Nano Letters, 2018, 18, 7801-7808.	9.1	138

#	Article	IF	CITATIONS
109	Solid-immersion metalenses for infrared focal plane arrays. Applied Physics Letters, 2018, 113, .	3.3	66
110	Three-Dimensional Measurement of the Helicity-Dependent Forces on a Mie Particle. Physical Review Letters, 2018, 120, 223901.	7.8	25
111	Special Issue on "Ultra-capacity Metasurfaces with Low Dimension and High Efficiency― ACS Photonics, 2018, 5, 1640-1642.	6.6	10
112	Nano-optic endoscope for high-resolution optical coherence tomography in vivo. Nature Photonics, 2018, 12, 540-547.	31.4	255
113	Large area metalenses: design, characterization, and mass manufacturing. Optics Express, 2018, 26, 1573.	3.4	162
114	The harmonic state of quantum cascade lasers: origin, control, and prospective applications [Invited]. Optics Express, 2018, 26, 9464.	3.4	30
115	Time-dependent population inversion gratings in laser frequency combs. Optica, 2018, 5, 475.	9.3	39
116	Selective excitation and imaging of ultraslow phonon polaritons in thin hexagonal boron nitride crystals. Light: Science and Applications, 2018, 7, 27.	16.6	75
117	Radiative Thermal Runaway Due to Negative-Differential Thermal Emission Across a Solid-Solid Phase Transition. Physical Review Applied, 2018, 10, .	3.8	20
118	Widely tunable harmonic frequency comb in a quantum cascade laser. Applied Physics Letters, 2018, 113,	3.3	19
119	High-efficiency chiral meta-lens. Scientific Reports, 2018, 8, 7240.	3.3	36
120	Polarization state generation and measurement with a single metasurface. Optics Express, 2018, 26, 21455.	3.4	88
121	Ultra-confined mid-infrared resonant phonon polaritons in van der Waals nanostructures. Science Advances, 2018, 4, eaat7189.	10.3	100
122	Imaging of Ultra-Confined Phonon Polaritons in Hexagonal Boron Nitride on Gold., 2018,,.		1
123	Inverse design of large-area metasurfaces. Optics Express, 2018, 26, 33732.	3.4	177
124	Achromatic Metalens over 60 nm Bandwidth in the Visible and Metalens with Reverse Chromatic Dispersion. Nano Letters, 2017, 17, 1819-1824.	9.1	453
125	Ultra-compact visible chiral spectrometer with meta-lenses. APL Photonics, 2017, 2, .	5.7	108
126	Optical Nanomaterials: Light Manipulation in Metallic Nanowire Networks with Functional Connectivity (Advanced Optical Materials 5/2017). Advanced Optical Materials, 2017, 5, .	7.3	1

#	Article	IF	Citations
127	Watt-Level Continuous-Wave Emission from a Bifunctional Quantum Cascade Laser/Detector. ACS Photonics, 2017, 4, 1225-1231.	6.6	50
128	Scalable, ultra-resistant structural colors based on network metamaterials. Light: Science and Applications, 2017, 6, e16233-e16233.	16.6	70
129	Generation of wavelength-independent subwavelength Bessel beams using metasurfaces. Light: Science and Applications, 2017, 6, e16259-e16259.	16.6	213
130	Observation of Nanoscale Refractive Index Contrast via Photoinduced Force Microscopy. ACS Photonics, 2017, 4, 846-851.	6.6	27
131	Immersion Meta-Lenses at Visible Wavelengths for Nanoscale Imaging. Nano Letters, 2017, 17, 3188-3194.	9.1	155
132	Metasurface Polarization Optics: Independent Phase Control of Arbitrary Orthogonal States of Polarization. Physical Review Letters, 2017, 118, 113901.	7.8	1,033
133	Light Manipulation in Metallic Nanowire Networks with Functional Connectivity. Advanced Optical Materials, 2017, 5, 1600580.	7.3	14
134	Highâ€Operatingâ€Temperature Direct Ink Writing of Mesoscale Eutectic Architectures. Advanced Materials, 2017, 29, 1604778.	21.0	41
135	Elliptical orbits of microspheres in an evanescent field. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 11087-11091.	7.1	12
136	Arbitrary spin-to–orbital angular momentum conversion of light. Science, 2017, 358, 896-901.	12.6	828
137	Metalenses: Versatile multifunctional photonic components. Science, 2017, 358, .	12.6	671
138	Self-starting harmonic frequency comb generation in a quantum cascade laser. Nature Photonics, 2017, 11, 789-792.	31.4	74
139	Mechanical Detection and Imaging of Hyperbolic Phonon Polaritons in Hexagonal Boron Nitride. ACS Nano, 2017, 11, 8741-8746.	14.6	48
140	Epsilon-Near-Zero Substrate Engineering for Ultrathin-Film Perfect Absorbers. Physical Review Applied, 2017, 8, .	3.8	88
141	Meta-Lens Doublet in the Visible Region. Nano Letters, 2017, 17, 4902-4907.	9.1	328
142	Visible Wavelength Planar Metalenses Based on Titanium Dioxide. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23, 43-58.	2.9	62
143	Modeling and design of Al $<$ inf $>$ 0.25 $<$ /inf $>$ Ga $<$ inf $>$ 0.75 $<$ /inf $>$ As/GaAs terahertz quantum cascade lasers with a realistic band structure. , 2017, , .		0
144	Performance characteristics of 4-port in-plane and out-of-plane in-line metasurface polarimeters. Optics Express, 2017, 25, 28697.	3.4	17

#	Article	IF	Citations
145	Recent advances in planar optics: from plasmonic to dielectric metasurfaces. Optica, 2017, 4, 139.	9.3	837
146	Spin-to-orbital angular momentum conversion in dielectric metasurfaces. Optics Express, 2017, 25, 377.	3.4	160
147	Single-mode instability in standing-wave lasers: The quantum cascade laser as a self-pumped parametric oscillator. Physical Review A, 2016, 94, .	2.5	71
148	Subwavelength resolution imaging by ultra-thin meta-lens. , 2016, , .		0
149	Broadband and chiral binary dielectric meta-holograms. Science Advances, 2016, 2, e1501258.	10.3	266
150	Super-Dispersive Off-Axis Meta-Lenses for Compact High Resolution Spectroscopy. Nano Letters, 2016, 16, 3732-3737.	9.1	179
151	Optical absorbers based on strong interference in ultraâ€thin films. Laser and Photonics Reviews, 2016, 10, 735-749.	8.7	194
152	Broadband high-efficiency dielectric metasurfaces for the visible spectrum. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 10473-10478.	7.1	417
153	High efficiency near diffraction-limited mid-infrared flat lenses based on metasurface reflectarrays. Optics Express, 2016, 24, 18024.	3.4	114
154	Designing large, high-efficiency, high-numerical-aperture, transmissive meta-lenses for visible light. Optics Express, 2016, 24, 5110.	3.4	117
155	Subfemtonewton Force Spectroscopy at the Thermal Limit in Liquids. Physical Review Letters, 2016, 116, 228001.	7.8	22
156	Measurement of bound states in the continuum by a detector embedded in a photonic crystal. Light: Science and Applications, 2016, 5, e16147-e16147.	16.6	73
157	Polarization-Insensitive Metalenses at Visible Wavelengths. Nano Letters, 2016, 16, 7229-7234.	9.1	532
158	Multispectral Chiral Imaging with a Metalens. Nano Letters, 2016, 16, 4595-4600.	9.1	360
159	Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging. Science, 2016, 352, 1190-1194.	12.6	2,435
160	Designed Quasi-1D Potential Structures Realized in Compositionally Graded InAs _{1–<i>x</i>} P _{<i>x</i>} Nanowires. Nano Letters, 2016, 16, 1017-1021.	9.1	8
161	Ultracompact metasurface in-line polarimeter. Optica, 2016, 3, 42.	9.3	183
162	Active Optical Metasurfaces Based on Defect-Engineered Phase-Transition Materials. Nano Letters, 2016, 16, 1050-1055.	9.1	186

#	Article	IF	Citations
163	Multiâ€wavelength quantum cascade laser arrays. Laser and Photonics Reviews, 2015, 9, 452-477.	8.7	45
164	Near-Field Imaging of Phased Array Metasurfaces. Nano Letters, 2015, 15, 3851-3858.	9.1	55
165	Controlled steering and focusing of Surface Plasmons with Metasurfaces. , 2015, , .		0
166	Achromatic metasurfaces by dispersive phase compensation. , 2015, , .		5
167	Multiwavelength achromatic metasurfaces by dispersive phase compensation. Science, 2015, 347, 1342-1345.	12.6	868
168	Holographic optical metasurfaces: a review of current progress. Reports on Progress in Physics, 2015, 78, 024401.	20.1	263
169	Optical Metasurfaces and Prospect of Their Applications Including Fiber Optics. Journal of Lightwave Technology, 2015, 33, 2344-2358.	4.6	102
170	Controlled steering of Cherenkov surface plasmon wakes with a one-dimensional metamaterial. Nature Nanotechnology, 2015, 10, 804-809.	31.5	119
171	Achromatic Metasurface Lens at Telecommunication Wavelengths. Nano Letters, 2015, 15, 5358-5362.	9.1	367
172	Holographic Metalens for Switchable Focusing of Surface Plasmons. Nano Letters, 2015, 15, 3585-3589.	9.1	72
173	Lateral chirality-sorting optical forces. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13190-13194.	7.1	182
174	Broadband Multifunctional Efficient Meta-Gratings Based on Dielectric Waveguide Phase Shifters. Nano Letters, 2015, 15, 6709-6715.	9.1	99
175	Classical and fluctuationâ€induced electromagnetic interactions in micronâ€scale systems: designer bonding, antibonding, and Casimir forces. Annalen Der Physik, 2015, 527, 45-80.	2.4	45
176	Absolute position total internal reflection microscopy with an optical tweezer. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E5609-15.	7.1	30
177	Demonstration of a quick process to achieve buried heterostructure quantum cascade laser leading to high power and wall plug efficiency. Optical Engineering, 2014, 53, 087104.	1.0	11
178	Electrically pumped semiconductor laser with monolithic control of circular polarization. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E5623-32.	7.1	25
179	Mode switching in a multi-wavelength distributed feedback quantum cascade laser using an external micro-cavity. Applied Physics Letters, 2014, 104, 051102.	3.3	3
180	Flat optics with designer metasurfaces. Nature Materials, 2014, 13, 139-150.	27.5	4,358

#	Article	IF	CITATIONS
181	Ultra-Compact Mid-IR Modulators Based on Electrically Tunable Optical Antennas. , 2014, , .		O
182	Instability-induced pattern formation of photoactivated functional polymers. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17017-17022.	7.1	34
183	Study of photocurrent generation in InP nanowire-based p+-i-n+ photodetectors. Nano Research, 2014, 7, 544-552.	10.4	37
184	Optical bistability with a repulsive optical force in coupled silicon photonic crystal membranes. Applied Physics Letters, 2013, 103, .	3.3	14
185	High-brightness quantum cascade laser spectrometers based on master-oscillator-power-amplifier arrays. , 2013, , .		0
186	Single-mode tapered quantum cascade lasers. Applied Physics Letters, 2013, 102, .	3.3	16
187	Measurement of the ultrafast temporal response of a plasmonic antenna. Annalen Der Physik, 2013, 525, L6.	2.4	9
188	Investigation of Tunable Single-Mode Quantum Cascade Lasers Via Surface-Acoustic-Wave Modulation. IEEE Journal of Quantum Electronics, 2013, 49, 1053-1061.	1.9	2
189	Flat Optics: Controlling Wavefronts With Optical Antenna Metasurfaces. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19, 4700423-4700423.	2.9	258
190	Tetrahedral Colloidal Clusters from Random Parking of Bidisperse Spheres. Physical Review Letters, 2013, 110, 148303.	7.8	80
191	High-power low-divergence tapered quantum cascade lasers with plasmonic collimators. Applied Physics Letters, 2013, 102, .	3.3	14
192	High-brightness tapered quantum cascade lasers. Applied Physics Letters, 2013, 102, 053503.	3.3	24
193	External ring-cavity quantum cascade lasers. Applied Physics Letters, 2013, 102, .	3.3	21
194	Aberrations of flat lenses and aplanatic metasurfaces. Optics Express, 2013, 21, 31530.	3.4	163
195	Metasurface-based half-wave plate. , 2013, , .		0
196	Generation of picosecond pulses and frequency combs in actively mode locked external ring cavity quantum cascade lasers. Applied Physics Letters, $2013, 103, \ldots$	3.3	39
197	Angle-independent antireflective layer based on buried IR nanoantennas. , 2012, , .		0
198	Double-waveguide quantum cascade laser. Applied Physics Letters, 2012, 100, 033502.	3.3	6

#	Article	IF	Citations
199	Giant birefringence in optical antenna arrays with widely tailorable optical anisotropy. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 12364-12368.	7.1	176
200	Broadband wavefront engineering with optical resonator arrays. , 2012, , .		0
201	Limiting Factors to the Temperature Performance of THz Quantum Cascade Lasers Based on the Resonant-Phonon Depopulation Scheme. IEEE Transactions on Terahertz Science and Technology, 2012, 2, 83-92.	3.1	59
202	Sensitivity enhancement of off-axis ICOS using wavelength modulation. Applied Physics B: Lasers and Optics, 2012, 108, 353-359.	2.2	24
203	Phase control from the visible to the TeraHertz: Surface photonics for wavefront engineering. , 2012, , .		0
204	Modeling nanoscale V-shaped antennas for the design of optical phased arrays. Physical Review B, 2012, 85, .	3.2	96
205	Master-oscillator power-amplifier quantum cascade laser array. Applied Physics Letters, 2012, 101, .	3.3	31
206	Aberration-Free Ultrathin Flat Lenses and Axicons at Telecom Wavelengths Based on Plasmonic Metasurfaces. Nano Letters, 2012, 12, 4932-4936.	9.1	1,528
207	Ultra-thin plasmonic optical vortex plate based on phase discontinuities. Applied Physics Letters, 2012, 100, .	3.3	451
208	Ultra-thin perfect absorber employing a tunable phase change material. Applied Physics Letters, 2012, 101, .	3.3	519
209	Control of buckling in large micromembranes using engineered support structures. Journal of Micromechanics and Microengineering, 2012, 22, 065028.	2.6	38
210	Out-of-Plane Reflection and Refraction of Light by Anisotropic Optical Antenna Metasurfaces with Phase Discontinuities. Nano Letters, 2012, 12, 1702-1706.	9.1	506
211	A Broadband, Background-Free Quarter-Wave Plate Based on Plasmonic Metasurfaces. Nano Letters, 2012, 12, 6328-6333.	9.1	1,065
212	Beam engineering of quantum cascade lasers. Laser and Photonics Reviews, 2012, 6, 24-46.	8.7	56
213	GaAs/Al <inf>0.15</inf> Ga <inf>0.85</inf> As terahertz quantum cascade lasers with double-phonon resonant depopulation operating up to 172 K., 2011, , .		0
214	Nonlinear optical interactions of laser modes in quantum cascade lasers. Journal of Modern Optics, 2011, 58, 727-742.	1.3	12
215	Designing evanescent optical interactions to control the expression of Casimir forces in optomechanical structures. Applied Physics Letters, 2011, 98, .	3.3	22
216	The Casimir effect in microstructured geometries. Nature Photonics, 2011, 5, 211-221.	31.4	387

#	Article	IF	Citations
217	Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction. Science, 2011, 334, 333-337.	12.6	7,240
218	Ultrafast Rabi flopping and coherent pulse propagation in a quantum cascade laser. Nature Photonics, 2010, 4, 706-710.	31.4	58
219	GaAs/Al0.15Ga0.85As terahertz quantum cascade lasers with double-phonon resonant depopulation operating up to 172 K. Applied Physics Letters, 2010, 97, 131111.	3.3	31
220	Whispering-gallery mode resonators for highly unidirectional laser action. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 22407-22412.	7.1	185
221	REPULSIVE CASIMIR AND VAN DER WAALS FORCES: FROM MEASUREMENTS TO FUTURE TECHNOLOGIES. International Journal of Modern Physics A, 2010, 25, 2252-2259.	1.5	15
222	Polarity-controlled visible/infrared electroluminescence in Si-nanocrystal/Si light-emitting devices. Applied Physics Letters, 2010, 97, 071112.	3.3	15
223	Nonlinear dynamics of coupled transverse modes in quantum cascade lasers. Journal of Modern Optics, 2010, 57, 1892-1899.	1.3	3
224	Layered superconductors as negative-refractive-index metamaterials. Physical Review B, 2010, 81, .	3.2	59
225	Wavefront engineering of semiconductor lasers using plasmonics. , 2010, , .		0
226	REPULSIVE CASIMIR AND VAN DER WAALS FORCES: FROM MEASUREMENTS TO FUTURE TECHNOLOGIES. , 2010, , .		1
227	Directional emission and universal far-field behavior from semiconductor lasers with lima \tilde{A} on-shaped microcavity. Applied Physics Letters, 2009, 94, .	3.3	103
228	Optical nanorod antennas as dispersive one-dimensional Fabry–Pérot resonators for surface plasmons. Applied Physics Letters, 2009, 95, .	3.3	95
229	Semiconductor lasers with integrated plasmonic polarizers. Applied Physics Letters, 2009, 94, .	3.3	64
230	The bright future of sub-wavelength photonics: From light manipulation to quantum levitation at the nanoscale. , 2009, , .		0
231	High power thermoelectrically cooled and uncooled quantum cascade lasers with optimized reflectivity facet coatings. Applied Physics Letters, 2009, 95, .	3.3	70
232	High performance quantum cascade lasers based on three-phonon-resonance design. Applied Physics Letters, 2009, 94, .	3.3	71
233	High-Temperature Operation of Terahertz Quantum Cascade Laser Sources. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15, 952-967.	2.9	111
234	Mode-locked pulses from mid-infrared Quantum Cascade Lasers. Optics Express, 2009, 17, 12929.	3.4	168

#	Article	IF	Citations
235	Broadband Distributed-Feedback Quantum Cascade Laser Array Operating From 8.0 to 9.8 \$mu\$m. IEEE Photonics Technology Letters, 2009, 21, 914-916.	2.5	63
236	On the temperature dependence of point-defect-mediated luminescence in silicon. Applied Physics Letters, 2009, 94, 251113.	3.3	10
237	Exciton-related electroluminescence from ZnO nanowire light-emitting diodes. Applied Physics Letters, 2009, 94, .	3.3	90
238	Multi-beam multi-wavelength semiconductor lasers. Applied Physics Letters, 2009, 95, .	3.3	21
239	DFB Quantum Cascade Laser Arrays. IEEE Journal of Quantum Electronics, 2009, 45, 554-565.	1.9	94
240	3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach. Applied Physics Letters, 2009, 95, .	3.3	180
241	Widely tunable mode-hop free external cavity quantum cascade lasers for high resolution spectroscopy and chemical sensing. Applied Physics B: Lasers and Optics, 2008, 92, 305-311.	2.2	202
242	Small-divergence semiconductor lasers by plasmonic collimation. Nature Photonics, 2008, 2, 564-570.	31.4	216
243	Plasmonic Laser Antennas and Related Devices. IEEE Journal of Selected Topics in Quantum Electronics, 2008, 14, 1448-1461.	2.9	111
244	Laser action in nanowires: Observation of the transition from amplified spontaneous emission to laser oscillation. Applied Physics Letters, 2008, 93, 051101.	3.3	223
245	Small divergence edge-emitting semiconductor lasers with two-dimensional plasmonic collimators. Applied Physics Letters, 2008, 93, .	3.3	51
246	Multimode regimes in quantum cascade lasers: From coherent instabilities to spatial hole burning. Physical Review A, 2008, 77, .	2.5	184
247	Room temperature terahertz quantum cascade laser source based on intracavity difference-frequency generation. Applied Physics Letters, 2008, 92, .	3.3	199
248	High-Performance Quantum Cascade Lasers Grown by Metal-Organic Vapor Phase Epitaxy and Their Applications to Trace Gas Sensing. Journal of Lightwave Technology, 2008, 26, 3534-3555.	4.6	46
249	Low divergence semiconductor lasers by plasmonic collimation. , 2008, , .		0
250	Highly collimated and ultra-high-intensity near-field lasers by wavefront engineering. , 2008, , .		0
251	1.6W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 \hat{l} /4m. Applied Physics Letters, 2008, 92, 111110.	3.3	171
252	Terahertz frequency quantum cascade lasers operating up to $178\mathrm{K}$ with copper metal-metal waveguides. , 2008 , , .		0

#	Article	IF	CITATIONS
253	High performance room temperature quantum cascade lasers based on three-phonon-resonance depopulation., 2008,,.		O
254	Surface-emitting terahertz quantum cascade laser source based on intracavity difference-frequency generation. Applied Physics Letters, 2008, 93, 161110.	3.3	26
255	Reply to "Comment on â€~Precision measurement of the Casimir-Lifshitz force in a fluid' ― Physical Review A, 2008, 77, .	2.5	37
256	Femtosecond dynamics of resonant tunneling and superlattice relaxation in quantum cascade lasers. Applied Physics Letters, 2008, 92, 122114.	3.3	27
257	Gain Recovery Dynamics and Photon-Driven Transport in Quantum Cascade Lasers. Physical Review Letters, 2008, 100, 167401.	7.8	85
258	Coherent coupling of multiple transverse modes in a quantum cascade laser. , 2008, , .		0
259	Microwatt-level terahertz sources based on intra-cavity difference-frequency generation in mid-infrared quantum cascade lasers. , 2008, , .		3
260	Continuously tunable compact single-mode quantum cascade laser source for chemical sensing. , 2008, , .		0
261	Wide ridge low-divergence metal-metal terahertz quantum cascade lasers. , 2008, , .		O
262	Femtosecond resonant pulse propagation in quantum cascade lasers: Evidence of coherent effects. , 2008, , .		0
263	Terahertz quantum cascade lasers operating up to 178 K with copper metal-metal waveguides., 2008,,.		O
264	$1.3\mbox{W}$ quantum cascade lasers with optimized design for continuous-wave operation at room temperature. , 2008, , .		0
265	Nonlinear Quantum Cascade Lasers: Toward Broad Tunability and Short-Wavelength Operation. , 2007,		O
266	Photon-Driven Transport in Quantum Cascade Lasers., 2007,,.		0
267	Terahertz Quantum Cascade Laser Source Based on Intra-Cavity Difference-Frequency Generation. , 2007, , .		1
268	Efficient point defect engineered si light-emitting diode at 1.218 μm., 2007,,.		0
269	Coupled metallic antenna nanorod arrays. , 2007, , .		1
270	Terahertz difference frequency generation in quantum cascade lasers. , 2007, , .		0

#	Article	IF	Citations
271	Differential near-field scanning optical microscopy. , 2007, , .		10
272	Current Injection Spiral-Shaped Chaotic Microcavity Quantum Cascade Lasers., 2007,,.		1
273	Low-Divergence Surface-Emitting Terahertz Quantum Cascade Lasers. , 2007, , .		0
274	Efficient point defect engineered si light-emitting diode at 1.218 & amp; #x003BC; m., 2007, , .		0
275	Plasmonic Quantum Cascade Laser Antenna. , 2007, , .		0
276	Broadly Tunable Single-Mode Quantum Cascade Laser Source. , 2007, , .		0
277	Controlled Modification of Erbium Lifetime in Silicon Dioxide Film with Chromium or Titanium Coatings. Materials Research Society Symposia Proceedings, 2007, 1055, 1.	0.1	0
278	Design and fabrication of photonic crystal quantum cascade lasers for optofluidics. Optics Express, 2007, 15, 4499.	3.4	31
279	Casimir Forces and Quantum Electrodynamical Torques: Physics and Nanomechanics. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13, 400-414.	2.9	219
280	Coherent instabilities in a semiconductor laser with fast gain recovery. Physical Review A, 2007, 75, .	2.5	117
281	Quantum cascade lasers: Quantum design, high performance technology for mid- and far-infrared photonics and commercialization. , 2007, , .		0
282	Plasmonic quantum cascade laser antenna. , 2007, , .		0
283	Time-Resolved Studies of Gain Dynamics in Quantum Cascade Laser. AIP Conference Proceedings, 2007, ,	0.4	1
284	Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation. Nature Photonics, 2007, 1, 288-292.	31.4	283
285	Differential Near-Field Scanning Optical Microscopy Using Sensor Arrays. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13, 1721-1729.	2.9	9
286	Nonlinear optics with quantum cascade lasers. Laser Physics, 2007, 17, 672-679.	1.2	4
287	Quantum electrodynamics of accelerated atoms in free space and in cavities. Physical Review A, 2006, 74, .	2.5	49
288	Mid-infrared and Terahertz Quantum Cascade Lasers: from quantum design to commercialization. , 2006, , .		0

#	Article	IF	CITATIONS
289	Frequency modulation spectroscopy by means of quantum-cascade lasers. Applied Physics B: Lasers and Optics, 2006, 85, 223-229.	2.2	49
290	Pulsed- and continuous-mode operation at high temperature of strained quantum-cascade lasers grown by metalorganic vapor phase epitaxy. Applied Physics Letters, 2006, 88, 041102.	3.3	19
291	Quantum cascade photonic crystal lasers: Design, fabrication, and applications. , 2006, , .		0
292	Active optical antenna. , 2006, , .		0
293	Coherent instabilities and self-pulsations in Quantum Cascade Lasers. , 2006, , .		0
294	Hybrid single nanowire photonic crystal structure., 2006,,.		0
295	Ultrafast gain dynamics in a quantum cascade laser. , 2006, , .		0
296	Novel photonic crystal quantum cascade laser platform. , 2006, , .		1
297	Semiconductor nanowires embedded in optical microcavities. , 2006, , .		1
298	High power quantum cascade lasers by MOVPE. , 2006, , .		0
299	Torque on birefringent plates induced by quantum fluctuations. Physical Review A, 2005, 71, .	2.5	119
300	Coherent nonlinear optics with quantum cascade structures. Journal of Modern Optics, 2005, 52, 2293-2302.	1.3	8
301	Scullyet al.Reply:. Physical Review Letters, 2004, 93, .	7.8	23
302	Lasing mode pattern of a quantum cascade photonic crystal surface-emitting microcavity laser. Applied Physics Letters, 2004, 84, 4164-4166.	3.3	13
303	Low-threshold continuous-wave operation of quantum-cascade lasers grown by metalorganic vapor phase epitaxy. Applied Physics Letters, 2004, 85, 5842-5844.	3.3	43
304	Temperature dependence and single-mode tuning behavior of second-harmonic generation in quantum cascade lasers. Applied Physics Letters, 2004, 84, 2751-2753.	3.3	12
305	Stability of Pulse Emission and Enhancement of Intracavity Second-Harmonic Generation in Self-Mode-Locked Quantum Cascade Lasers. IEEE Journal of Quantum Electronics, 2004, 40, 197-204.	1.9	10
306	Active mode locking of broadband quantum cascade lasers. IEEE Journal of Quantum Electronics, 2004, 40, 844-851.	1.9	17

#	Article	IF	CITATIONS
307	Theoretical and experimental study of optical gain and linewidth enhancement factor of type-I quantum-cascade lasers. IEEE Journal of Quantum Electronics, 2004, 40, 1663-1674.	1.9	52
308	Optimized second-harmonic generation in quantum cascade lasers. IEEE Journal of Quantum Electronics, 2003, 39, 1345-1355.	1.9	93
309	Optimization of broadband quantum cascade lasers for continuous wave operation. Applied Physics Letters, 2003, 83, 24-26.	3.3	32
310	Terahertz quantum cascade lasers in a magnetic field. Applied Physics Letters, 2003, 83, 3873-3875.	3.3	26
311	Quantum cascade lasers: ultrahigh-speed operation, optical wireless communication, narrow linewidth, and far-infrared emission. IEEE Journal of Quantum Electronics, 2002, 38, 511-532.	1.9	265
312	Kilohertz linewidth from frequency-stabilized mid-infrared quantum cascade lasers. Optics Letters, 1999, 24, 1844.	3.3	113
313	High-Power Directional Emission from Microlasers with Chaotic Resonators. Science, 1998, 280, 1556-1564.	12.6	709
314	Quantum cascade disk lasers. Applied Physics Letters, 1996, 69, 2456-2458.	3.3	86
315	Quantum Cascade Laser. Science, 1994, 264, 553-556.	12.6	4,380
316	Nonlinear light generation in quantum cascade and semiconductor diode lasers. , 0, , .		0
317	"Quantum cascade lasers: widely tailorable light sources for the mid- to far-infrared and their applications"., 0,,.		0
318	Optofluidic tuning of quantum cascade lasers. , 0, , .		0
319	Accurately Measuring Molecular Rotational Spectra in Excited Vibrational Modes. Applied Spectroscopy, 0, , 000370282211111.	2.2	O