List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9351313/publications.pdf Version: 2024-02-01

		20759	28224
223	13,089	60	105
papers	citations	h-index	g-index
233 all docs	233	233 times ranked	9445
an uocs	uoes citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Urinary microbiota of women with recurrent urinary tract infection: collection and culture methods. International Urogynecology Journal, 2022, 33, 563-570.	0.7	12
2	A Child's urine is not sterile: A pilot study evaluating the Pediatric Urinary Microbiome. Journal of Pediatric Urology, 2022, 18, 383-392.	0.6	18
3	Symptom improvement with mirabegron treatment is associated with urobiome changes in adult women. International Urogynecology Journal, 2022, 33, 1319-1328.	0.7	6
4	Profiling the plasmid conjugation potential of urinary Escherichia coli. Microbial Genomics, 2022, 8, .	1.0	1
5	Regulation of Translation by Lysine Acetylation in Escherichia coli. MBio, 2022, 13, .	1.8	10
6	Whole-Genome Sequencing of <i>Staphylococcus aureus</i> and <i>Staphylococcus haemolyticus</i> Clinical Isolates from Egypt. Microbiology Spectrum, 2022, 10, .	1.2	7
7	Examination of Staphylococcus aureus Prophages Circulating in Egypt. Viruses, 2021, 13, 337.	1.5	5
8	Bladder Bacterial Diversity Differs in Continent and Incontinent Women: A Cross-sectional Study. Obstetrical and Gynecological Survey, 2021, 76, 146-147.	0.2	0
9	Standardization of microbiome studies for urolithiasis: an international consensus agreement. Nature Reviews Urology, 2021, 18, 303-311.	1.9	22
10	Genomic relatedness and clinical significance of Streptococcus mitis strains isolated from the urogenital tract of sexual partners. Microbial Genomics, 2021, 7, .	1.0	6
11	The human urobiome. Mammalian Genome, 2021, 32, 232-238.	1.0	13
12	Vaginal Estrogen Therapy Is Associated With Increased Lactobacillus in the Urine of Postmenopausal Women With Overactive Bladder Symptoms. Obstetrical and Gynecological Survey, 2021, 76, 144-145.	0.2	0
13	Recurrent urinary tract infection: Association of clinical profiles with urobiome composition in women. Neurourology and Urodynamics, 2021, 40, 1479-1489.	0.8	22
14	Discriminating between JCPyV and BKPyV in Urinary Virome Data Sets. Viruses, 2021, 13, 1041.	1.5	0
15	Genome Investigation of Urinary <i>Gardnerella</i> Strains and Their Relationship to Isolates of the Vaginal Microbiota. MSphere, 2021, 6, .	1.3	7
16	The Good and the Bad: Ecological Interaction Measurements Between the Urinary Microbiota and Uropathogens. Frontiers in Microbiology, 2021, 12, 659450.	1.5	12
17	A Randomized Clinical Trial of Standard Versus Expanded Cultures to Diagnose Urinary Tract Infections in Women. Journal of Urology, 2021, 206, 1212-1221.	0.2	8
18	The Microbiome of Male Infertility: Paving the Road Ahead. European Urology, 2021, 79, 837-838.	0.9	1

#	Article	IF	CITATIONS
19	Investigation of Plasmids Among Clinical Staphylococcus aureus and Staphylococcus haemolyticus Isolates From Egypt. Frontiers in Microbiology, 2021, 12, 659116.	1.5	11
20	The EcoCyc Database in 2021. Frontiers in Microbiology, 2021, 12, 711077.	1.5	122
21	A mouse model displays host and bacterial strain differences in <i>Aerococcus urinae</i> urinary tract infection. Biology Open, 2021, 10, .	0.6	6
22	Forming Consensus To Advance Urobiome Research. MSystems, 2021, 6, e0137120.	1.7	42
23	Meta-analysis of Clinical Microbiome Studies in Urolithiasis Reveal Age, Stone Composition, and Study Location as the Predominant Factors in Urolithiasis-Associated Microbiome Composition. MBio, 2021, 12, e0200721.	1.8	26
24	Species-Level Resolution of Female Bladder Microbiota from 16S rRNA Amplicon Sequencing. MSystems, 2021, 6, e0051821.	1.7	19
25	Phenyl-Lactic Acid Is an Active Ingredient in Bactericidal Supernatants of Lactobacillus crispatus. Journal of Bacteriology, 2021, 203, e0036021.	1.0	16
26	Cultivable Bacteria in Urine of Women With Interstitial Cystitis: (Not) What We Expected. Female Pelvic Medicine and Reconstructive Surgery, 2021, 27, 322-327.	0.6	19
27	Characterizing Plasmids in Bacteria Species Relevant to Urinary Health. Microbiology Spectrum, 2021, 9, e0094221.	1.2	4
28	Male Bladder Microbiome Relates to Lower Urinary Tract Symptoms. European Urology Focus, 2020, 6, 376-382.	1.6	92
29	The microbiome of calcium-based urinary stones. Urolithiasis, 2020, 48, 191-199.	1.2	49
30	The urobiome of continent adult women: a crossâ€sectional study. BJOG: an International Journal of Obstetrics and Gynaecology, 2020, 127, 193-201.	1.1	92
31	"Sterile―Epididymal Abscess With Contralateral Intratesticular Recurrence. Urology, 2020, 136, e20-e23.	0.5	0
32	Genomic Survey of E. coli From the Bladders of Women With and Without Lower Urinary Tract Symptoms. Frontiers in Microbiology, 2020, 11, 2094.	1.5	38
33	Vaginal estrogen therapy is associated with increased Lactobacillus in the urine of postmenopausal women with overactive bladder symptoms. American Journal of Obstetrics and Gynecology, 2020, 223, 727.e1-727.e11.	0.7	42
34	Ur-ine Old Age: Urinary Microbiome of Older Community Dwelling Women. Cell Host and Microbe, 2020, 28, 149-151.	5.1	0
35	A Thermosensitive, Phase-Variable Epigenetic Switch: pap Revisited. Microbiology and Molecular Biology Reviews, 2020, 84,	2.9	13
36	An ideal spacing is required for the control of Class II CRP-dependent promoters by the status of CRP K100. FEMS Microbiology Letters, 2020, 367, .	0.7	2

#	Article	IF	CITATIONS
37	Comparative Genomic Study of Lactobacillus jensenii and the Newly Defined Lactobacillus mulieris Species Identifies Species-Specific Functionality. MSphere, 2020, 5, .	1.3	14
38	Asymptomatic Bacteriuria versus Symptom Underreporting in Older Emergency Department Patients with Suspected Urinary Tract Infection. Journal of the American Geriatrics Society, 2020, 68, 2696-2699.	1.3	5
39	Bladder bacterial diversity differs in continent and incontinent women: a cross-sectional study. American Journal of Obstetrics and Gynecology, 2020, 223, 729.e1-729.e10.	0.7	29
40	Draft Genome Sequence of Proteus mirabilis UMB1310, Isolated from the Female Urinary Tract. Microbiology Resource Announcements, 2020, 9, .	0.3	3
41	Draft Genome Sequence of Antibiotic-Resistant Enterococcus faecalis Strain UMB0843, Isolated from the Female Urinary Tract. Microbiology Resource Announcements, 2020, 9, .	0.3	Ο
42	Draft Genome Sequence of Streptococcus anginosus UMB1296, Isolated from the Female Urinary Tract. Microbiology Resource Announcements, 2020, 9, .	0.3	2
43	Draft Genome Sequence of Lactobacillus jensenii UMB0847, Isolated from the Female Urinary Tract. Microbiology Resource Announcements, 2020, 9, .	0.3	3
44	Draft Genome Sequence of Klebsiella pneumoniae UMB7779, Isolated from the Female Urinary Tract. Microbiology Resource Announcements, 2020, 9, .	0.3	2
45	Draft Genome Sequence of Klebsiella pneumoniae UMB8492, Isolated from the Female Urinary Tract. Microbiology Resource Announcements, 2020, 9, .	0.3	2
46	Draft Genome Sequence of Staphylococcus epidermidis UMB7765, Isolated from the Urobiome of a Woman with Recurrent Urinary Tract Infection. Microbiology Resource Announcements, 2020, 9, .	0.3	3
47	Draft Genome Sequence of Streptococcus agalactiae UMB7782, Isolated from the Female Urinary Tract. Microbiology Resource Announcements, 2020, 9, .	0.3	2
48	Draft Genome Sequence of Enterococcus faecalis UMB7780, Isolated from the Female Urinary Tract. Microbiology Resource Announcements, 2020, 9, .	0.3	2
49	Draft Genome Sequence of Proteus mirabilis Strain UMB0038, Isolated from the Female Bladder. Microbiology Resource Announcements, 2020, 9, .	0.3	3
50	Draft Genome Sequence of Klebsiella pneumoniae UMB7783, Isolated from the Female Bladder. Microbiology Resource Announcements, 2020, 9, .	0.3	2
51	Draft Genome Sequence of Escherichia coli UMB1353, Isolated from the Female Urinary Tract. Microbiology Resource Announcements, 2020, 9, .	0.3	3
52	Draft Genome Sequence of Escherichia coli UMB9246, Isolated from the Bladder of a Woman with Recurrent Urinary Tract Infection. Microbiology Resource Announcements, 2020, 9, .	0.3	2
53	Draft Genome Sequence of Lactobacillus jensenii UMB0836, Isolated from the Female Bladder. Microbiology Resource Announcements, 2020, 9,	0.3	3
54	<i>Aerococcus urinae</i> Isolated from Women with Lower Urinary Tract Symptoms: <i>In Vitro</i> Aggregation and Genome Analysis. Journal of Bacteriology, 2020, 202, .	1.0	9

#	Article	IF	CITATIONS
55	Characteristics of the microbiota in the urine of women with type 2 diabetes. Journal of Diabetes and Its Complications, 2020, 34, 107561.	1.2	9
56	Draft Genome Sequence of Staphylococcus epidermidis UMB8493, Isolated from the Female Urinary Tract. Microbiology Resource Announcements, 2020, 9, .	0.3	3
57	Introducing Lu-1, a Novel Lactobacillus jensenii Phage Abundant in the Urogenital Tract. PLoS ONE, 2020, 15, e0234159.	1.1	10
58	Draft Genome Sequence of Corynebacterium aurimucosum UMB7769, Isolated from the Female Urinary Tract. Microbiology Resource Announcements, 2020, 9, .	0.3	4
59	Draft Genome Sequence of Lactobacillus crispatus UMB1163, Isolated from the Female Urinary Tract. Microbiology Resource Announcements, 2020, 9, .	0.3	3
60	Draft Genome Sequence of Streptococcus anginosus UMB0839, Isolated from the Female Urinary Tract. Microbiology Resource Announcements, 2020, 9, .	0.3	2
61	Draft Genome Sequence of Enterococcus faecalis UMB1309, Isolated from Catheterized Urine. Microbiology Resource Announcements, 2020, 9, .	0.3	3
62	Draft Genome Sequence of Actinomyces neuii UMB1295, Isolated from the Female Urinary Tract. Microbiology Resource Announcements, 2020, 9, .	0.3	3
63	Complete Genome Sequences of Streptococcus mitis Strains Isolated from the Oral Cavity and Urogenital Tract of a Woman and Her Male Sexual Partner. Microbiology Resource Announcements, 2020, 9, .	0.3	1
64	Temporal Dynamics of the Adult Female Lower Urinary Tract Microbiota. MBio, 2020, 11, .	1.8	41
65	The Urethral Microbiota: A Missing Link in the Female Urinary Microbiota. Journal of Urology, 2020, 204, 303-309.	0.2	32
66	Characterization and spontaneous induction of urinary tract Streptococcus anginosus prophages. Journal of General Virology, 2020, 101, 685-691.	1.3	6
67	Draft Genome Sequence of Lactobacillus jensenii Strain UMB7766, Isolated from the Female Bladder. Microbiology Resource Announcements, 2020, 9, .	0.3	3
68	Draft Genome Sequence of Lactobacillus mulieris UMB7784, Isolated from the Female Urinary Tract. Microbiology Resource Announcements, 2020, 9, .	0.3	5
69	Draft Genome Sequence of <i>Lactobacillus mulieris</i> UMB9245, Isolated from the Female Bladder. Microbiology Resource Announcements, 2020, 9, .	0.3	4
70	Draft Genome Sequence of Corynebacterium coyleae UMB8490, Isolated from the Female Urinary Tract. Microbiology Resource Announcements, 2020, 9, .	0.3	2
71	Draft Genome Sequence of Streptococcus anginosus UMB7768, Isolated from a Woman with Recurrent UTI Symptoms. Microbiology Resource Announcements, 2020, 9, .	0.3	3
72	Post-translational Protein Acetylation: An Elegant Mechanism for Bacteria to Dynamically Regulate Metabolic Functions. Frontiers in Microbiology, 2019, 10, 1604.	1.5	122

#	Article	IF	CITATIONS
73	FIRST-IN-CLASS HAT ACTIVATOR HIGHLY SYNERGISTIC WITH PAN-HDAC INHIBITOR ROMIDEPSIN LEADING TO PROFOUND HISTONE ACETYLATION CYTOTOXICITY. Hematological Oncology, 2019, 37, 125-126.	0.8	2
74	Benchmarking urine storage and collection conditions for evaluating the female urinary microbiome. Scientific Reports, 2019, 9, 13409.	1.6	33
75	Oral probiotics and the female urinary microbiome: a double-blinded randomized placebo-controlled trial. International Urology and Nephrology, 2019, 51, 2149-2159.	0.6	26
76	Old instillations and new implications for bladder cancer: the urinary microbiome and intravesical <scp>BCG</scp> . BJU International, 2019, 124, 7-8.	1.3	13
77	Controlling for Contaminants in Low-Biomass 16S rRNA Gene Sequencing Experiments. MSystems, 2019, 4, .	1.7	166
78	Bacteriophages of the lower urinaryÂtract. Nature Reviews Urology, 2019, 16, 422-432.	1.9	47
79	Implications of the Genitourinary Microbiota in Prostatic Disease. Current Urology Reports, 2019, 20, 34.	1.0	28
80	Female lower urinary tract microbiota do not associate with IC/PBS symptoms: a case-controlled study. International Urogynecology Journal, 2019, 30, 1835-1842.	0.7	33
81	Mechanisms, Detection, and Relevance of Protein Acetylation in Prokaryotes. MBio, 2019, 10, .	1.8	94
82	RGD-decorated cholesterol stabilized polyplexes for targeted siRNA delivery to glioblastoma cells. Drug Delivery and Translational Research, 2019, 9, 679-693.	3.0	7
83	Bladder urinary oxygen tension is correlated with urinary microbiota composition. International Urogynecology Journal, 2019, 30, 1261-1267.	0.7	14
84	Global Lysine Acetylation in <i>Escherichia coli</i> Results from Growth Conditions That Favor Acetate Fermentation. Journal of Bacteriology, 2019, 201, .	1.0	34
85	Analysis of crystalline and solution states of ligand-free spermidine <i>N</i> -acetyltransferase (SpeG) from <i>Escherichia coli</i> . Acta Crystallographica Section D: Structural Biology, 2019, 75, 545-553.	1.1	8
86	Draft Genome Sequences of Six Lactobacillus gasseri and Three <i>Lactobacillus paragasseri</i> Strains Isolated from the Female Bladder. Microbiology Resource Announcements, 2019, 8, .	0.3	7
87	A Cross-sectional Pilot Cohort Study Comparing Standard Urine Collection to the Peezy Midstream Device for Research Studies Involving Women. Female Pelvic Medicine and Reconstructive Surgery, 2019, 25, e28-e33.	0.6	17
88	The Urinary Microbiome: Implications in Bladder Cancer Pathogenesis and Therapeutics. Urology, 2019, 126, 10-15.	0.5	58
89	Extracellular Acidic pH Inhibits Acetate Consumption by Decreasing Gene Transcription of the Tricarboxylic Acid Cycle and the Glyoxylate Shunt. Journal of Bacteriology, 2019, 201, .	1.0	9
90	Urobiome updates: advances in urinary microbiome research. Nature Reviews Urology, 2019, 16, 73-74.	1.9	70

#	Article	IF	CITATIONS
91	Characterization of the φCTX-like Pseudomonas aeruginosa phage Dobby isolated from the kidney stone microbiota. Access Microbiology, 2019, 1, .	0.2	11
92	Draft Genome Sequences of 11 Lactobacillus jensenii Strains Isolated from the Female Bladder. Microbiology Resource Announcements, 2019, 8, .	0.3	6
93	Complete Genome Sequence of a Pseudomonas aeruginosa Isolate from a Kidney Stone. Microbiology Resource Announcements, 2019, 8, .	0.3	3
94	Structural Basis for DNA Recognition by the Two-Component Response Regulator RcsB. MBio, 2018, 9, .	1.8	15
95	Culturing of female bladder bacteria reveals an interconnected urogenital microbiota. Nature Communications, 2018, 9, 1557.	5.8	241
96	Diversity of the midstream urine microbiome in adults with chronic kidney disease. International Urology and Nephrology, 2018, 50, 1123-1130.	0.6	53
97	Bacteriophages of the Urinary Microbiome. Journal of Bacteriology, 2018, 200, .	1.0	70
98	Urine trouble: should we think differently about UTI?. International Urogynecology Journal, 2018, 29, 205-210.	0.7	57
99	Identification of Acetylated Proteins in Borrelia burgdorferi. Methods in Molecular Biology, 2018, 1690, 177-182.	0.4	9
100	An acetylatable lysine controls CRP function in <i>E. coli</i> . Molecular Microbiology, 2018, 107, 116-131.	1.2	51
101	The spermidine acetyltransferase SpeG regulates transcription of the small RNA rprA. PLoS ONE, 2018, 13, e0207563.	1.1	4
102	Announcement of the 2019 BLAST Conference: "BLAST XV: 15th International Conference on Bacterial Locomotion and Signal Transduction― MSystems, 2018, 3, .	1.7	0
103	Urinary microbes and postoperative urinary tract infection risk in urogynecologic surgical patients. International Urogynecology Journal, 2018, 29, 1797-1805.	0.7	91
104	Identification of Novel Protein Lysine Acetyltransferases in Escherichia coli. MBio, 2018, 9, .	1.8	86
105	Sex differences in lower urinary tract biology and physiology. Biology of Sex Differences, 2018, 9, 45.	1.8	71
106	Urinary symptoms are associated with certain urinary microbes in urogynecologic surgical patients. International Urogynecology Journal, 2018, 29, 1765-1771.	0.7	68
107	Detecting viral genomes in the female urinary microbiome. Journal of General Virology, 2018, 99, 1141-1146.	1.3	32
108	Increasing Growth Yield and Decreasing Acetylation in Escherichia coli by Optimizing the Carbon-to-Magnesium Ratio in Peptide-Based Media. Applied and Environmental Microbiology, 2017, 83, .	1.4	50

#	Article	IF	CITATIONS
109	Female urinary microbiota. Current Opinion in Urology, 2017, 27, 282-286.	0.9	58
110	Associating infection and incontinence with the female urinary microbiota. Nature Reviews Urology, 2017, 14, 72-74.	1.9	17
111	Microorganisms Identified in the Maternal Bladder: Discovery of the Maternal Bladder Microbiota. AJP Reports, 2017, 07, e188-e196.	0.4	23
112	Urinary Symptoms and Their Associations With Urinary Tract Infections in Urogynecologic Patients. Obstetrics and Gynecology, 2017, 130, 718-725.	1.2	36
113	Draft Genome Sequence of Staphylococcus epidermidis (Winslow and Winslow) Evans (ATCC 14990). Genome Announcements, 2017, 5, .	0.8	4
114	Ancient Regulatory Role of Lysine Acetylation in Central Metabolism. MBio, 2017, 8, .	1.8	105
115	Draft Genome Sequence of Escherichia coli K-12 (ATCC 10798). Genome Announcements, 2017, 5, .	0.8	1
116	Draft Genome Sequence of Escherichia coli K-12 (ATCC 29425). Genome Announcements, 2017, 5, .	0.8	5
117	Evaluation of the urinary microbiota of women with uncomplicated stress urinary incontinence. American Journal of Obstetrics and Gynecology, 2017, 216, 55.e1-55.e16.	0.7	133
118	The female urinary microbiota, urinary health and common urinary disorders. Annals of Translational Medicine, 2017, 5, 34-34.	0.7	94
119	The association between bacteria and urinary stones. Annals of Translational Medicine, 2017, 5, 32-32.	0.7	72
120	Draft Genome Sequence of Enterococcus faecalis ATCC BAA-2128. Genome Announcements, 2017, 5, .	0.8	0
121	Draft Genome Sequences of Two ATCC Staphylococcus aureus subsp. aureus Strains. Genome Announcements, 2017, 5, .	0.8	0
122	Draft Genome Sequence of Micrococcus luteus (Schroeter) Cohn (ATCC 12698). Genome Announcements, 2017, 5, .	0.8	2
123	The Female Urinary Microbiota/Microbiome: Clinical and Research Implications. Rambam Maimonides Medical Journal, 2017, 8, e0015.	0.4	19
124	The New World of the Urinary Microbiota in Women. Obstetrical and Gynecological Survey, 2016, 71, 151-153.	0.2	1
125	Draft Genome Sequence for a Urinary Isolate of Nosocomiicoccus ampullae. Genome Announcements, 2016, 4, .	0.8	4
126	Draft Genome Sequence of a Urinary Isolate of Lactobacillus crispatus. Genome Announcements, 2016, 4, .	0.8	5

#	Article	IF	CITATIONS
127	Reply. American Journal of Obstetrics and Gynecology, 2016, 215, 403.	0.7	О
128	The Clinical Urine Culture: Enhanced Techniques Improve Detection of Clinically Relevant Microorganisms. Journal of Clinical Microbiology, 2016, 54, 1216-1222.	1.8	277
129	Quantification of Lysine Acetylation and Succinylation Stoichiometry in Proteins Using Mass Spectrometric Data-Independent Acquisitions (SWATH). Journal of the American Society for Mass Spectrometry, 2016, 27, 1758-1771.	1.2	73
130	Crystal structure of nonphosphorylated receiver domain of the stress response regulator RcsB from <i>Escherichia coli</i> . Protein Science, 2016, 25, 2216-2224.	3.1	9
131	Cenome sequences and annotation of two urinary isolates of E. coli. Standards in Genomic Sciences, 2016, 11, 79.	1.5	10
132	Expert Panel Recommendations on Lower Urinary Tract Health of Women Across Their Life Span. Journal of Women's Health, 2016, 25, 1086-1096.	1.5	12
133	The urinary microbiota: a paradigm shift for bladder disorders?. Current Opinion in Obstetrics and Gynecology, 2016, 28, 407-412.	0.9	51
134	Bacterial protein acetylation: new discoveries unanswered questions. Current Genetics, 2016, 62, 335-341.	0.8	100
135	Incontinence medication response relates to the female urinary microbiota. International Urogynecology Journal, 2016, 27, 723-733.	0.7	213
136	The Bladder Is Not Sterile: History and Current Discoveries on the Urinary Microbiome. Current Bladder Dysfunction Reports, 2016, 11, 18-24.	0.2	122
137	In vitroevidence that RNA Polymerase acetylation and acetyl phosphate-dependent CpxR phosphorylation affectcpxPtranscription regulation. FEMS Microbiology Letters, 2016, 363, fnw011.	0.7	7
138	Reply to Argiri Sianou, George Galyfos and Georgios Kaparos' Letter to the Editor re: Alan J. Wolfe, Linda Brubaker. "Sterile Urine―and the Presence of Bacteria. Eur Urol 2015;68:173–4. European Urology, 2016, 69, e8-e9.	0.9	1
139	Genomes of Gardnerella Strains Reveal an Abundance of Prophages within the Bladder Microbiome. PLoS ONE, 2016, 11, e0166757.	1.1	40
140	The <i>E. coli</i> sirtuin CobB shows no preference for enzymatic and nonenzymatic lysine acetylation substrate sites. MicrobiologyOpen, 2015, 4, 66-83.	1.2	87
141	Protein acetylation dynamics in response to carbon overflow in <scp><i>E</i></scp> <i>scherichia coli</i> . Molecular Microbiology, 2015, 98, 847-863.	1.2	164
142	Glycolysis for Microbiome Generation. Microbiology Spectrum, 2015, 3, .	1.2	45
143	Glycolysis for the Microbiome Generation. , 2015, , 1-16.		2
144	The new world of the urinary microbiota in women. American Journal of Obstetrics and Gynecology, 2015, 213, 644-649.	0.7	97

#	ARTICLE	IF	CITATIONS
145	Development and Validation of a High-Throughput Cell-Based Screen To Identify Activators of a Bacterial Two-Component Signal Transduction System. Antimicrobial Agents and Chemotherapy, 2015, 59, 3789-3799.	1.4	16
146	"Sterile Urine―and the Presence of Bacteria. European Urology, 2015, 68, 173-174.	0.9	91
147	Multiplexed, Scheduled, High-Resolution Parallel Reaction Monitoring on a Full Scan QqTOF Instrument with Integrated Data-Dependent and Targeted Mass Spectrometric Workflows. Analytical Chemistry, 2015, 87, 10222-10229.	3.2	88
148	The female urinary microbiome in urgency urinary incontinence. American Journal of Obstetrics and Gynecology, 2015, 213, 347.e1-347.e11.	0.7	244
149	The Interaction between Enterobacteriaceae and Calcium Oxalate Deposits. PLoS ONE, 2015, 10, e0139575.	1.1	95
150	Structural, Kinetic and Proteomic Characterization of Acetyl Phosphate-Dependent Bacterial Protein Acetylation. PLoS ONE, 2014, 9, e94816.	1.1	249
151	IL22 Regulates Human Urothelial Cell Sensory and Innate Functions through Modulation of the Acetylcholine Response, Immunoregulatory Cytokines and Antimicrobial Peptides: Assessment of an In Vitro Model. PLoS ONE, 2014, 9, e111375.	1.1	13
152	Cyclic Di-GMP: Using the Past To Peer into the Future. , 2014, , 321-332.		1
153	The Female Urinary Microbiome: a Comparison of Women with and without Urgency Urinary Incontinence. MBio, 2014, 5, e01283-14.	1.8	562
154	The metabolic enzyme <scp>AdhE</scp> controls the virulence of <scp><i>E</i></scp> <i>scherichia coli</i> â€ <scp>O</scp> 157: <scp>H</scp> 7. Molecular Microbiology, 2014, 93, 199-211.	1.2	49
155	A tale of two machines: a review of the <scp>BLAST</scp> meeting, <scp>T</scp> ucson, <scp>AZ</scp> , 20–24 <scp>J</scp> anuary 2013. Molecular Microbiology, 2014, 91, 6-25.	1.2	6
156	Urine Is Not Sterile: Use of Enhanced Urine Culture Techniques To Detect Resident Bacterial Flora in the Adult Female Bladder. Journal of Clinical Microbiology, 2014, 52, 871-876.	1.8	676
157	Urinary bacteria in adult women with urgency urinary incontinence. International Urogynecology Journal, 2014, 25, 1179-1184.	0.7	107
158	Interplay between Bladder Microbiota and Urinary Antimicrobial Peptides: Mechanisms for Human Urinary Tract Infection Risk and Symptom Severity. PLoS ONE, 2014, 9, e114185.	1.1	106
159	Day of Surgery Urine Cultures Identify Urogynecologic Patients at Increased Risk for Postoperative Urinary Tract Infection. Journal of Urology, 2013, 189, 1721-1724.	0.2	35
160	Central metabolism controls transcription of a virulence gene regulator in Vibrio cholerae. Microbiology (United Kingdom), 2013, 159, 792-802.	0.7	44
161	Acetylation of the Response Regulator RcsB Controls Transcription from a Small RNA Promoter. Journal of Bacteriology, 2013, 195, 4174-4186.	1.0	99
162	Evidence of Uncultivated Bacteria in the Adult Female Bladder. Journal of Clinical Microbiology, 2012, 50, 1376-1383.	1.8	543

#	Article	IF	CITATIONS
163	Inhibition of Acetyl Phosphate-dependent Transcription by an Acetylatable Lysine on RNA Polymerase. Journal of Biological Chemistry, 2012, 287, 32147-32160.	1.6	53
164	Involvement of protein acetylation in glucoseâ€induced transcription of a stressâ€responsive promoter. Molecular Microbiology, 2011, 81, 1190-1204.	1.2	109
165	Constitutive Expression of the Maltoporin LamB in the Absence of OmpR Damages the Cell Envelope. Journal of Bacteriology, 2011, 193, 842-853.	1.0	4
166	Environmental and genetic factors that contribute to Escherichia coli K-12 biofilm formation. Archives of Microbiology, 2010, 192, 715-728.	1.0	44
167	Bacterial protein acetylation: the dawning of a new age. Molecular Microbiology, 2010, 77, 15-21.	1.2	171
168	Sighting the Alien Within: a New Look at <i>Bdellovibrio</i> . Journal of Bacteriology, 2010, 192, 6327-6328.	1.0	1
169	Role of Acetyl-Phosphate in Activation of the Rrp2-RpoN-RpoS Pathway in Borrelia burgdorferi. PLoS Pathogens, 2010, 6, e1001104.	2.1	78
170	Physiologically relevant small phosphodonors link metabolism to signal transduction. Current Opinion in Microbiology, 2010, 13, 204-209.	2.3	128
171	A Critical Process Controlled by MalT and OmpR Is Revealed through Synthetic Lethality. Journal of Bacteriology, 2009, 191, 5320-5324.	1.0	4
172	A combination of assays reveals biomass differences in biofilms formed by <i>Escherichia coli</i> mutants. Letters in Applied Microbiology, 2009, 49, 299-304.	1.0	61
173	Optimized two-dimensional thin layer chromatography to monitor the intracellular concentration of acetyl phosphate and other small phosphorylated molecules. Biological Procedures Online, 2008, 10, 36-46.	1.4	18
174	Quorum Sensing "Flips―the Acetate Switch. Journal of Bacteriology, 2008, 190, 5735-5737.	1.0	8
175	Get the Message Out: Cyclic-Di-GMP Regulates Multiple Levels of Flagellum-Based Motility. Journal of Bacteriology, 2008, 190, 463-475.	1.0	208
176	Signal Integration by the Two-Component Signal Transduction Response Regulator CpxR. Journal of Bacteriology, 2008, 190, 2314-2322.	1.0	108
177	The Two-Component Response Regulator RcsB Regulates Type 1 Piliation in <i>Escherichia coli</i> . Journal of Bacteriology, 2007, 189, 7159-7163.	1.0	34
178	The Intracellular Concentration of Acetyl Phosphate in Escherichia coli Is Sufficient for Direct Phosphorylation of Two-Component Response Regulators. Journal of Bacteriology, 2007, 189, 5574-5581.	1.0	162
179	The Sugar Phosphotransferase System of Vibrio fischeri Inhibits both Motility and Bioluminescence. Journal of Bacteriology, 2007, 189, 2571-2574.	1.0	16
180	The multiple roles of CRP at the complex acs promoter depend on activation region 2 and IHF. Molecular Microbiology, 2007, 65, 425-440.	1.2	10

#	Article	IF	CITATIONS
181	Diguanylate Cyclases Control Magnesium-Dependent Motility of Vibrio fischeri. Journal of Bacteriology, 2006, 188, 8196-8205.	1.0	47
182	Acetyl phosphate-sensitive regulation of flagellar biogenesis and capsular biosynthesis depends on the Rcs phosphorelay. Molecular Microbiology, 2006, 61, 734-747.	1.2	97
183	A Complex Transcription Network Controls the Early Stages of Biofilm Development by Escherichia coli. Journal of Bacteriology, 2006, 188, 3731-3739.	1.0	145
184	The Escherichia coli K-12 NarL and NarP Proteins Insulate the nrf Promoter from the Effects of Integration Host Factor. Journal of Bacteriology, 2006, 188, 7449-7456.	1.0	30
185	Integration of three signals at theEscherichia coli nrfpromoter: a role for Fis protein in catabolite repression. Molecular Microbiology, 2005, 57, 496-510.	1.2	43
186	Glucose metabolism at high density growth ofE. coli B andE. coli K: Differences in metabolic pathways are responsible for efficient glucose utilization inE. coli B as determined by microarrays and Northern blot analyses. Biotechnology and Bioengineering, 2005, 90, 805-820.	1.7	122
187	Magnesium Promotes Flagellation of Vibrio fischeri. Journal of Bacteriology, 2005, 187, 2058-2065.	1.0	45
188	The Acetate Switch. Microbiology and Molecular Biology Reviews, 2005, 69, 12-50.	2.9	1,034
189	Vibrio fischeri Ï f 54 Controls Motility, Biofilm Formation, Luminescence, and Colonization. Applied and Environmental Microbiology, 2004, 70, 2520-2524.	1.4	116
190	Regulation at complex bacterial promoters: how bacteria use different promoter organizations to produce different regulatory outcomes. Current Opinion in Microbiology, 2004, 7, 102-108.	2.3	133
191	Acetylation of the Chemotaxis Response Regulator CheY by Acetyl-CoA Synthetase Purified from Escherichia coli. Journal of Molecular Biology, 2004, 342, 383-401.	2.0	58
192	Modulation of CRP-dependent transcription at the Escherichia coli acsP2 promoter by nucleoprotein complexes: anti-activation by the nucleoid proteins FIS and IHF. Molecular Microbiology, 2003, 51, 241-254.	1.2	53
193	Evidence that acetyl phosphate functions as a global signal during biofilm development. Molecular Microbiology, 2003, 48, 977-988.	1.2	131
194	Cyclic AMP Receptor Protein-Dependent Activation of the Escherichia coli acs P2 Promoter by a Synergistic Class III Mechanism. Journal of Bacteriology, 2003, 185, 5148-5157.	1.0	76
195	Chemoattraction of Vibrio fischeri to Serine, Nucleosides, and N -Acetylneuraminic Acid, a Component of Squid Light-Organ Mucus. Applied and Environmental Microbiology, 2003, 69, 7527-7530.	1.4	76
196	Independent regulation of the divergentEscherichia coli nrfAandacsP1 promoters by a nucleoprotein assembly at a shared regulatory region. Molecular Microbiology, 2002, 43, 687-701.	1.2	58
197	Active Site Mutations in CheA, the Signal-Transducing Protein Kinase of the Chemotaxis System in Escherichia coli. Biochemistry, 2001, 40, 13876-13887.	1.2	30
198	ï,70 Is the Principal Sigma Factor Responsible for Transcription of acs, Which Encodes Acetyl Coenzyme A Synthetase in Escherichia coli. Journal of Bacteriology, 2000, 182, 551-554.	1.0	33

#	Article	IF	CITATIONS
199	Polar Clustering of the Chemoreceptor Complex in Escherichia coli Occurs in the Absence of Complete CheA Function. Journal of Bacteriology, 2000, 182, 967-973.	1.0	62
200	Regulation of Acetyl Coenzyme A Synthetase inEscherichia coli. Journal of Bacteriology, 2000, 182, 4173-4179.	1.0	200
201	Global Regulatory Mutations in csrA andrpoS Cause Severe Central Carbon Stress in Escherichia coli in the Presence of Acetate. Journal of Bacteriology, 2000, 182, 1632-1640.	1.0	101
202	Genetic Analysis of the <i>nuo</i> Locus, Which Encodes the Proton-Translocating NADH Dehydrogenase in <i>Escherichia coli</i> . Journal of Bacteriology, 1998, 180, 1174-1184.	1.0	37
203	Coexpression of the long and short forms of CheA, the chemotaxis histidine kinase, by members of the family Enterobacteriaceae. Journal of Bacteriology, 1997, 179, 1813-1818.	1.0	21
204	Genetic analysis of the catalytic domain of the chemotaxis-associated histidine kinase CheA. Journal of Bacteriology, 1997, 179, 825-830.	1.0	17
205	Cloning, characterization, and functional expression of acs, the gene which encodes acetyl coenzyme A synthetase in Escherichia coli. Journal of Bacteriology, 1995, 177, 2878-2886.	1.0	224
206	pH dependence of CheA autophosphorylation in Escherichia coli. Journal of Bacteriology, 1994, 176, 3870-3877.	1.0	17
207	The short form of CheA couples chemoreception to CheA phosphorylation. Journal of Bacteriology, 1994, 176, 4483-4491.	1.0	27
208	Regulation of acetyl phosphate synthesis and degradation, and the control of flagellar expression inEscherichia coli. Molecular Microbiology, 1994, 12, 973-984.	1.2	155
209	Mutations in NADH:ubiquinone oxidoreductase of Escherichia coli affect growth on mixed amino acids. Journal of Bacteriology, 1994, 176, 2143-2150.	1.0	152
210	The short form of the CheA protein restores kinase activity and chemotactic ability to kinase-deficient mutants Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 1518-1522.	3.3	79
211	Both CheA and CheW are required for reconstitution of chemotactic signaling in Escherichia coli. Journal of Bacteriology, 1989, 171, 5190-5193.	1.0	45
212	Migration of bacteria in semisolid agar Proceedings of the National Academy of Sciences of the United States of America, 1989, 86, 6973-6977.	3.3	378
213	Acetyladenylate plays a role in controlling the direction of flagellar rotation Proceedings of the National Academy of Sciences of the United States of America, 1988, 85, 6711-6715.	3.3	110
214	Regulation of Bacillus subtilis macrofiber twist development by D-alanine. Journal of Bacteriology, 1988, 170, 2328-2335.	1.0	7
215	Twist state phenotypes of Bacillus subtilis macrofibre mutants. Microbios, 1988, 53, 47-61.	0.3	2
216	Computerized video analysis of tethered bacteria. Review of Scientific Instruments, 1987, 58, 418-423.	0.6	18

#	Article	IF	CITATIONS
217	Reconstitution of signaling in bacterial chemotaxis. Journal of Bacteriology, 1987, 169, 1878-1885.	1.0	227
218	Characterization of nutrition-induced helix hand inversion of Bacillus subtilis macrofibers. Journal of Bacteriology, 1987, 169, 4068-4075.	1.0	4
219	The Political Economy of Regulation: Creating, Designing, and Removing Regulatory Forms Contemporary Sociology, 1981, 10, 578.	0.0	34
220	Roles of Diguanylate Cyclases and Phosphodiesterases in Motility and Biofilm Formation in <i>Vibrio fischeri</i> .,0,, 186-200.		3
221	Introduction to Second Messengers: Lessons from Cyclic AMP. , 0, , 1-7.		0
222	Genomic insights into <i>Lactobacillus gasseri</i> and <i>Lactobacillus paragasseri</i> . PeerJ, 0, 10, e13479.	0.9	3
223	The Urobiomes of Adult Women With Various Lower Urinary Tract Symptoms Status Differ: A Re-Analysis. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	16