Rajan Sankaranarayanan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9347971/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Structure of Threonyl-tRNA Synthetase-tRNAThr Complex Enlightens Its Repressor Activity and Reveals an Essential Zinc Ion in the Active Site. Cell, 1999, 97, 371-381.	28.9	291
2	A novel mode of carbohydrate recognition in jacalin, a Moraceae plant lectin with a β-prism fold. Nature Structural Biology, 1996, 3, 596-603.	9.7	224
3	Transfer RNA–Mediated Editing in Threonyl-tRNA Synthetase. Cell, 2000, 103, 877-884.	28.9	175
4	Zinc ion mediated amino acid discrimination by threonyl-tRNA synthetase. Nature Structural Biology, 2000, 7, 461-465.	9.7	139
5	Thermostable Bacillus subtilis Lipases: In Vitro Evolution and Structural Insight. Journal of Molecular Biology, 2008, 381, 324-340.	4.2	125
6	Structural Basis of Selection and Thermostability of Laboratory Evolved Bacillus subtilis Lipase. Journal of Molecular Biology, 2004, 341, 1271-1281.	4.2	122
7	Mechanistic and functional insights into fatty acid activation in Mycobacterium tuberculosis. Nature Chemical Biology, 2009, 5, 166-173.	8.0	119
8	A novel tunnel in mycobacterial type III polyketide synthase reveals the structural basis for generating diverse metabolites. Nature Structural and Molecular Biology, 2004, 11, 894-900.	8.2	85
9	In Vitro Evolved Non-Aggregating and Thermostable Lipase: Structural and Thermodynamic Investigation. Journal of Molecular Biology, 2011, 413, 726-741.	4.2	77
10	Nonprocessive [2Â+Â2]e ⁻ off-loading reductase domains from mycobacterial nonribosomal peptide synthetases. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 5681-5686.	7.1	73
11	Crystal Structure of Low-Molecular-Weight Protein Tyrosine Phosphatase from <i>Mycobacterium tuberculosis</i> at 1.9-AÌŠ Resolution. Journal of Bacteriology, 2005, 187, 2175-2181.	2.2	68
12	Versatility of polyketide synthases in generating metabolic diversity. Current Opinion in Structural Biology, 2007, 17, 736-743.	5.7	68
13	Post-transfer editing mechanism of a D-aminoacyl-tRNA deacylase-like domain in threonyl-tRNA synthetase from archaea. EMBO Journal, 2006, 25, 4152-4162.	7.8	67
14	Carbohydrate specificity and quaternary association in basic winged bean lectin: X-ray analysis of the lectin at 2.5 Ã resolution. Journal of Molecular Biology, 1998, 276, 787-796.	4.2	65
15	A Cell Wall–Degrading Esterase of <i>Xanthomonas oryzae</i> Requires a Unique Substrate Recognition Module for Pathogenesis on Rice. Plant Cell, 2009, 21, 1860-1873.	6.6	64
16	The βγ-Crystallin Superfamily Contains a Universal Motif for Binding Calcium [,] . Biochemistry, 2009, 48, 12180-12190.	2.5	63
17	Vertebrate Homologue of Drosophila GAGA Factor. Journal of Molecular Biology, 2010, 400, 434-447.	4.2	62
18	Mechanistic insights into cognate substrate discrimination during proofreading in translation. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 22117-22121.	7.1	60

#	Article	IF	CITATIONS
19	Structural basis of translational control by Escherichia coli threonyl tRNA synthetase. Nature Structural Biology, 2002, 9, 343-7.	9.7	56
20	Conformational Movements and Cooperativity upon Amino Acid, ATP and tRNA Binding in Threonyl-tRNA Synthetase. Journal of Molecular Biology, 2003, 331, 201-211.	4.2	53
21	A D-amino acid editing module coupled to the translational apparatus in archaea. Nature Structural and Molecular Biology, 2005, 12, 556-557.	8.2	52
22	Mechanism of chiral proofreading during translation of the genetic code. ELife, 2013, 2, e01519.	6.0	43
23	Molecular Basis of the Functional Divergence of Fatty Acyl-AMP Ligase Biosynthetic Enzymes of Mycobacterium tuberculosis. Journal of Molecular Biology, 2012, 416, 221-238.	4.2	40
24	PhyA, a Secreted Protein of Xanthomonas oryzae pv. oryzae, Is Required for Optimum Virulence and Growth on Phytic Acid as a Sole Phosphate Source. Molecular Plant-Microbe Interactions, 2003, 16, 973-982.	2.6	38
25	Structural insights into biosynthesis of resorcinolic lipids by a type III polyketide synthase in Neurospora crassa. Journal of Structural Biology, 2008, 162, 411-421.	2.8	37
26	A chiral selectivity relaxed paralog of DTD for proofreading tRNA mischarging in Animalia. Nature Communications, 2018, 9, 511.	12.8	31
27	The modular structure of Escherichia coli threonyl-tRNA synthetase as both an enzyme and a regulator of gene expression. Molecular Microbiology, 2003, 47, 961-974.	2.5	30
28	Elongation Factor Tu Prevents Misediting of Gly-tRNA(Gly) Caused by the Design Behind the Chiral Proofreading Site of D-Aminoacyl-tRNA Deacylase. PLoS Biology, 2016, 14, e1002465.	5.6	30
29	Chiral checkpoints during protein biosynthesis. Journal of Biological Chemistry, 2019, 294, 16535-16548.	3.4	29
30	Role of D-aminoacyl-tRNA deacylase beyond chiral proofreading as a cellular defense against glycine mischarging by AlaRS. ELife, 2017, 6, .	6.0	29
31	Exploring the Limits of Sequence and Structure in a Variant Î ² Î ³ -Crystallin Domain of the Protein Absent in Melanoma-1 (AIM1). Journal of Molecular Biology, 2008, 381, 509-518.	4.2	26
32	Unsaturated Lipid Assimilation by Mycobacteria Requires Auxiliary cis-trans Enoyl CoA Isomerase. Chemistry and Biology, 2015, 22, 1577-1587.	6.0	24
33	Specificity and catalysis hardwired at the RNA–protein interface in a translational proofreading enzyme. Nature Communications, 2015, 6, 7552.	12.8	24
34	Crystallization and Preliminary X-ray Studies of the Basic Lectin from Winged Bean (Psophocarpus) Tj ETQq0 0 0	rgBT/Ove	rlock 10 Tf 50
	Structural biology of Mycobacterium tuberculosis proteins: The Indian efforts. Tuberculosis, 2011, 91.		

456-468.

#	Article	IF	CITATIONS
37	Three-Dimensional Domain Swapping in Nitrollin, a Single-Domain βγ-Crystallin from Nitrosospira multiformis, Controls Protein Conformation and Stability but Not Dimerization. Journal of Molecular Biology, 2009, 385, 163-177.	4.2	18
38	Fatty acyl-AMP ligases and polyketide synthases are unique enzymes of lipid biosynthetic machinery in Mycobacterium tuberculosis. Tuberculosis, 2011, 91, 448-455.	1.9	18
39	A mutation in an exoglucanase of <i>Xanthomonas oryzae</i> pv. <i>oryzae</i> , which confers an endo mode of activity, affects bacterial virulence, but not the induction of immune responses, in rice. Molecular Plant Pathology, 2018, 19, 1364-1376.	4.2	17
40	The fidelity of the translation of the genetic code. Acta Biochimica Polonica, 2001, 48, 323-35.	0.5	15
41	Crystal structure of a fungal protease inhibitor from Antheraea mylitta. Journal of Structural Biology, 2009, 166, 79-87.	2.8	12
42	Aggregation-Prone Near-Native Intermediate Formation during Unfolding of a Structurally Similar Nonlenticular βγ-Crystallin Domain. Biochemistry, 2012, 51, 8502-8513.	2.5	12
43	A discriminator code–based DTD surveillance ensures faithful glycine delivery for protein biosynthesis in bacteria. ELife, 2018, 7, .	6.0	12
44	Switching a conflicted bacterial DTD-tRNA code is essential for the emergence of mitochondria. Science Advances, 2022, 8, eabj7307.	10.3	12
45	Crystallization and preliminary X-ray crystallographic studies of the N-terminal domain of FadD28, a fatty-acyl AMP ligase fromMycobacterium tuberculosis. Acta Crystallographica Section F: Structural Biology Communications, 2006, 62, 350-352.	0.7	11
46	Delineating the reaction mechanism of reductase domains of Nonribosomal Peptide Synthetases from mycobacteria. Journal of Structural Biology, 2014, 187, 207-214.	2.8	11
47	Crystallization and preliminary crystallographic studies of LipA, a secretory lipase/esterase from <i>Xanthomonas oryzae</i> pv. <i>oryzae</i> . Acta Crystallographica Section F: Structural Biology Communications, 2007, 63, 708-710.	0.7	10
48	Recruitment of archaeal DTD is a key event toward the emergence of land plants. Science Advances, 2021, 7, .	10.3	10
49	ATPase activity of RecD is essential for growth of the Antarctic <i>Pseudomonas syringae</i> Lz4W at low temperature. FEBS Journal, 2008, 275, 1835-1851.	4.7	9
50	Evolutionary and functional insights into Leishmania META1: evidence for lateral gene transfer and a role for META1 in secretion. BMC Evolutionary Biology, 2011, 11, 334.	3.2	9
51	Structural insights into the regulation of NADPH binding to reductase domains of nonribosomal peptide synthetases: A concerted loop movement model. Journal of Structural Biology, 2016, 194, 368-374.	2.8	9
52	Chiral proofreading during protein biosynthesis and its evolutionary implications. FEBS Letters, 2022, 596, 1615-1627.	2.8	8
53	Signals and Pathways Regulating Nucleolar Retention of Novel Putative Nucleolar GTPase NGP-1(GNL-2). Biochemistry, 2011, 50, 4521-4536.	2.5	7
54	A Transition Metal-Binding, Trimeric Î ² Î ³ -Crystallin from Methane-Producing Thermophilic Archaea, <i>Methanosaeta thermophila</i> . Biochemistry, 2017, 56, 1299-1310.	2.5	7

#	Article	IF	CITATIONS
55	A universal pocket in fatty acyl-AMP ligases ensures redirection of fatty acid pool away from coenzyme A-based activation. ELife, 2021, 10, .	6.0	7
56	Enzyme action at RNA–protein interface in DTD-like fold. Current Opinion in Structural Biology, 2018, 53, 107-114.	5.7	6
57	Peri-natal growth retardation rate and fat mass accumulation in mice lacking Dip2A is dependent on the dietary composition. Transgenic Research, 2020, 29, 553-562.	2.4	6
58	Crystallization and preliminary X-ray crystallographic investigations on several thermostable forms of aBacillus subtilislipase. Acta Crystallographica Section D: Biological Crystallography, 2004, 60, 160-162.	2.5	5
59	Mechanistic Insights Into Catalytic RNA–Protein Complexes Involved in Translation of the Genetic Code. Advances in Protein Chemistry and Structural Biology, 2017, 109, 305-353.	2.3	5
60	Fatty Acyl-AMP Ligases as Mechanistic Variants of ANL Superfamily and Molecular Determinants Dictating Substrate Specificities. Journal of the Indian Institute of Science, 2018, 98, 261-272.	1.9	5
61	DIP2 is a unique regulator of diacylglycerol lipid homeostasis in eukaryotes. ELife, 0, 11, .	6.0	5
62	Crystallization and preliminary X-ray crystallographic investigations of an unusual type III polyketide synthase PKS18 fromMycobacterium tuberculosis. Acta Crystallographica Section D: Biological Crystallography, 2004, 60, 749-751.	2.5	4
63	Crystallization and preliminary X-ray diffraction analysis of a protease inhibitor from the haemolymph of the Indian tasar silkwormAntheraea mylitta. Acta Crystallographica Section F: Structural Biology Communications, 2006, 62, 669-671.	0.7	4
64	A type III PKS makes the DIFference. Nature Chemical Biology, 2006, 2, 451-452.	8.0	4
65	Genomic innovation of ATD alleviates mistranslation associated with multicellularity in Animalia. ELife, 2020, 9, .	6.0	4
66	Role of the FnIII domain associated with a cell wallâ€degrading enzyme cellobiosidase of <i>Xanthomonas oryzae</i> pv. <i>oryzae</i> . Molecular Plant Pathology, 2022, 23, 1011-1021.	4.2	4
67	Aminoacylation at the Atomic Level in Class IIa Aminoacyl-tRNA Synthetases. Journal of Biomolecular Structure and Dynamics, 2000, 17, 23-27.	3.5	3
68	Crystallization and preliminary X-ray crystallographic investigations on a βγ-crystallin domain of absent in melanoma 1 (AIM1), a protein fromHomo sapiens. Acta Crystallographica Section F: Structural Biology Communications, 2006, 62, 282-284.	0.7	3
69	Crystallization and preliminary crystallographic studies of CbsA, a secretory exoglucanase from <i>Xanthomonas oryzae</i> pv. <i>oryzae</i> . Acta Crystallographica Section F: Structural Biology Communications, 2012, 68, 1191-1194.	0.7	3
70	Interface interactions between βγâ€crystallin domain and Igâ€like domain render Ca ²⁺ â€binding site inoperative in abundant perithecial protein of <i>Neurospora crassa</i> . Molecular Microbiology, 2018, 110, 955-972.	2.5	3
71	βγ-Crystallination Endows a Novel Bacterial Glycoside Hydrolase 64 with Ca ²⁺ -Dependent Activity Modulation. Journal of Bacteriology, 2019, 201, .	2.2	3
72	Cloning, expression, purification, crystallization and preliminary X-ray crystallographic investigations of a unique editing domain from archaebacteria. Acta Crystallographica Section D: Biological Crystallography, 2004, 60, 1662-1664.	2.5	2

#	Article	IF	CITATIONS
73	Cloning, overexpression, purification, crystallization and preliminary X-ray analysis of a female-specific lipocalin (FLP) expressed in the lacrimal glands of Syrian hamsters. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 509-512.	0.7	1
74	Cloning, expression, purification, crystallization and preliminary X-ray crystallographic analyses of threonyl-tRNA synthetase editing domain fromAeropyrum pernix. Acta Crystallographica Section F: Structural Biology Communications, 2012, 68, 1390-1393.	0.7	1
75	Editing and Proofreading in Translation \hat{a}^{\dagger} ., 2017, , .		1