## Manuel HervÃ;s

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9347417/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Adaptation of cyanobacterial photosynthesis to metal constraints. , 2022, , 109-128.                                                                                                                                             |     | 0         |
| 2  | The heterologous expression of a plastocyanin in the diatom Phaeodactylum tricornutum improves cell growth under ironâ€deficient conditions. Physiologia Plantarum, 2021, 171, 277-290.                                          | 5.2 | 9         |
| 3  | New Insights into the Evolution of the Electron Transfer from Cytochrome f to Photosystem I in the<br>Green and Red Branches of Photosynthetic Eukaryotes. Plant and Cell Physiology, 2021, 62, 1082-1093.                       | 3.1 | 7         |
| 4  | The singular properties of photosynthetic cytochrome c 550 from the diatom Phaeodactylum tricornutum suggest new alternative functions. Physiologia Plantarum, 2019, 166, 199-210.                                               | 5.2 | 1         |
| 5  | The photosynthetic cytochrome c 550 from the diatom Phaeodactylum tricornutum. Photosynthesis<br>Research, 2017, 133, 273-287.                                                                                                   | 2.9 | 6         |
| 6  | Iron Deficiency Induces a Partial Inhibition of the Photosynthetic Electron Transport and a High<br>Sensitivity to Light in the Diatom Phaeodactylum tricornutum. Frontiers in Plant Science, 2016, 7, 1050.                     | 3.6 | 54        |
| 7  | Cytc6-3: A New Isoform of Photosynthetic Cytc6Exclusive to Heterocyst-Forming Cyanobacteria. Plant<br>and Cell Physiology, 2016, 58, pcw184.                                                                                     | 3.1 | 3         |
| 8  | Interaction of photosystem I from Phaeodactylum tricornutum with plastocyanins as compared with<br>its native cytochrome c6: Reunion with a lost donor. Biochimica Et Biophysica Acta - Bioenergetics,<br>2015, 1847, 1549-1559. | 1.0 | 5         |
| 9  | Molecular recognition in the interaction of chloroplast 2 ys peroxiredoxin with NADPHâ€ŧhioredoxin reductase C (NTRC) and thioredoxin <i>x</i> . FEBS Letters, 2014, 588, 4342-4347.                                             | 2.8 | 25        |
| 10 | Structural and Functional Analysis of Novel Human Cytochrome c Targets in Apoptosis. Molecular and Cellular Proteomics, 2014, 13, 1439-1456.                                                                                     | 3.8 | 74        |
| 11 | A hydrogen bond network in the active site of Anabaena ferredoxin-NADP+ reductase modulates its catalytic efficiency. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, 251-263.                                        | 1.0 | 16        |
| 12 | External loops at the ferredoxin-NADP+ reductase protein–partner binding cavity contribute to substrates allocation. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, 296-305.                                         | 1.0 | 4         |
| 13 | Photosystem I Reduction in Diatoms: As Complex as the Green Lineage Systems but Less Efficient.<br>Biochemistry, 2013, 52, 8687-8695.                                                                                            | 2.5 | 9         |
| 14 | New Arabidopsis thaliana Cytochrome c Partners: A Look Into the Elusive Role of Cytochrome c in<br>Programmed Cell Death in Plants. Molecular and Cellular Proteomics, 2013, 12, 3666-3676.                                      | 3.8 | 58        |
| 15 | Communication between <scp>L</scp> –galactono–1,4–lactone dehydrogenase and cytochrome<br><i>c</i> . FEBS Journal, 2013, 280, 1830-1840.                                                                                         | 4.7 | 19        |
| 16 | Electron Transfer Pathways and Dynamics of Chloroplast NADPH-dependent Thioredoxin Reductase C<br>(NTRC). Journal of Biological Chemistry, 2012, 287, 33865-33872.                                                               | 3.4 | 31        |
| 17 | ArsH from the Cyanobacterium <i>Synechocystis</i> sp. PCC 6803 Is an Efficient NADPH-Dependent<br>Quinone Reductase. Biochemistry, 2012, 51, 1178-1187.                                                                          | 2.5 | 39        |
| 18 | Specific nitration of tyrosines 46 and 48 makes cytochrome <i>c</i> assemble a nonâ€functional apoptosome. FEBS Letters, 2012, 586, 154-158.                                                                                     | 2.8 | 35        |

Manuel HervÃis

| #  | Article                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Purification of Plastocyanin and Cytochrome c 6 from Plants, Green Algae, and Cyanobacteria.<br>Methods in Molecular Biology, 2011, 684, 79-94.                                                                                             | 0.9 | 6         |
| 20 | Probing the reactivity of different forms of azurin by flavin photoreduction. FEBS Journal, 2011, 278, 1506-1521.                                                                                                                           | 4.7 | 6         |
| 21 | Effect of crowding on the electron transfer process from plastocyanin and cytochrome c6 to<br>photosystem I: a comparative study from cyanobacteria to green algae. Photosynthesis Research, 2011,<br>107, 279-286.                         | 2.9 | 10        |
| 22 | The Convergent Evolution of Cytochrome c 6 and Plastocyanin Has Been Driven by Geochemical Changes. , 2011, , 607-630.                                                                                                                      |     | 2         |
| 23 | Dual role of FMN in flavodoxin function: Electron transfer cofactor and modulation of the protein–protein interaction surface. Biochimica Et Biophysica Acta - Bioenergetics, 2010, 1797, 262-271.                                          | 1.0 | 18        |
| 24 | Structural and functional changes induced by tyrosine nitration in cytochrome c, a bi-functional protein. Biochimica Et Biophysica Acta - Bioenergetics, 2010, 1797, 70.                                                                    | 1.0 | 0         |
| 25 | Flavodoxin: A compromise between efficiency and versatility in the electron transfer from<br>Photosystem I to Ferredoxin-NADP+ reductase. Biochimica Et Biophysica Acta - Bioenergetics, 2009,<br>1787, 144-154.                            | 1.0 | 37        |
| 26 | Proteomic analyses of the response of cyanobacteria to different stress conditions. FEBS Letters, 2009, 583, 1753-1758.                                                                                                                     | 2.8 | 59        |
| 27 | Acetylsalicylic acid induces programmed cell death in Arabidopsis cell cultures. Planta, 2008, 228, 89-97.                                                                                                                                  | 3.2 | 43        |
| 28 | Flavodoxin-Mediated Electron Transfer from Photosystem I to Ferredoxin-NADP <sup>+</sup><br>Reductase in <i>Anabaena</i> :  Role of Flavodoxin Hydrophobic Residues in Proteinâ^Protein<br>Interactions. Biochemistry, 2008, 47, 1207-1217. | 2.5 | 30        |
| 29 | Effect of Nitration on the Physicochemical and Kinetic Features of Wild-Type and Monotyrosine<br>Mutants of Human Respiratory Cytochrome c. Biochemistry, 2008, 47, 12371-12379.                                                            | 2.5 | 45        |
| 30 | A proteomic approach to iron and copper homeostasis in cyanobacteria. Briefings in Functional Genomics & Proteomics, 2008, 6, 322-329.                                                                                                      | 3.8 | 19        |
| 31 | The Specificity in the Interaction between Cytochrome f and Plastocyanin from the Cyanobacterium<br>Nostoc sp. PCC 7119 Is Mainly Determined by the Copper Protein. Biochemistry, 2007, 46, 997-1003.                                       | 2.5 | 18        |
| 32 | A Laser Flash-Induced Kinetic Analysis of in Vivo Photosystem I Reduction by Site-Directed Mutants of Plastocyanin and Cytochromec6inSynechocystissp. PCC 6803â€. Biochemistry, 2006, 45, 1054-1060.                                        | 2.5 | 15        |
| 33 | A comparative kinetic analysis of the reactivity of plant, horse, and human respiratory cytochrome c<br>towards cytochrome c oxidase. Biochemical and Biophysical Research Communications, 2006, 346,<br>1108-1113.                         | 2.1 | 23        |
| 34 | Convergent Evolution of Cytochrome c6 and Plastocyanin. , 2006, , 683-696.                                                                                                                                                                  |     | 14        |
| 35 | Role of the surface charges D72 and K8 in the function and structural stability of the cytochrome c6<br>from Nostoc sp. PCC 7119. FEBS Journal, 2005, 272, 3317-3327.                                                                       | 4.7 | 6         |
| 36 | Cyanobacterial Photosystem I lacks specificity in its interaction with cytochrome c6 electron donors.<br>Photosynthesis Research, 2005, 83, 329-333.                                                                                        | 2.9 | 22        |

MANUEL HERVÃIS

| #  | Article                                                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Laser Flash-Induced Kinetic Analysis of Cytochrome f Oxidation by Wild-Type and Mutant Plastocyanin from the Cyanobacterium Nostoc sp. PCC 7119. Biochemistry, 2005, 44, 11601-11607.                                                                        | 2.5  | 30        |
| 38 | AnabaenaFlavodoxin as an Electron Carrier from Photosystem I to Ferredoxin-NADP+Reductase. Role<br>of Flavodoxin Residues in Proteinâ^'Protein Interaction and Electron Transferâ€. Biochemistry, 2005, 44,<br>97-104.                                       | 2.5  | 24        |
| 39 | In vivo photosystem I reduction in thermophilic and mesophilic cyanobacteria: The thermal resistance of the process is limited by factors other than the unfolding of the partners. Biochemical and Biophysical Research Communications, 2005, 334, 170-175. | 2.1  | 13        |
| 40 | Respiratory cytochromecoxidase can be efficiently reduced by the photosynthetic redox proteins cytochromec6and plastocyanin in cyanobacteria. FEBS Letters, 2005, 579, 3565-3568.                                                                            | 2.8  | 24        |
| 41 | Purification of Plastocyanin and Cytochrome <i>c<sub>6</sub></i> From Plants, Green Algae, and Cyanobacteria. , 2004, 274, 079-092.                                                                                                                          |      | 2         |
| 42 | The Efficient Functioning of Photosynthesis and Respiration in Synechocystis sp. PCC 6803 Strictly<br>Requires the Presence of either Cytochrome c6 or Plastocyanin. Journal of Biological Chemistry,<br>2004, 279, 7229-7233.                               | 3.4  | 73        |
| 43 | Functional characterization of the evolutionarily divergent fern plastocyanin. FEBS Journal, 2004, 271, 3449-3456.                                                                                                                                           | 0.2  | 8         |
| 44 | Electron Transfer Between Membrane Complexes and Soluble Proteins in Photosynthesis.<br>ChemInform, 2004, 35, no.                                                                                                                                            | 0.0  | 0         |
| 45 | Redox properties of Arabidopsis cytochrome c6 are independent of the loop extension specific to higher plants. Biochimica Et Biophysica Acta - Bioenergetics, 2004, 1657, 115-120.                                                                           | 1.0  | 12        |
| 46 | A comparative structural and functional analysis of cyanobacterial plastocyanin and cytochrome c<br>(6) as alternative electron donors to Photosystem I. Photosynthesis Research, 2003, 75, 97-110.                                                          | 2.9  | 55        |
| 47 | A new function for an old cytochrome?. Nature, 2003, 424, 33-34.                                                                                                                                                                                             | 27.8 | 118       |
| 48 | Analysis of the stability of cytochrome c6 with an improved stopped-flow protocol. Biochemical and Biophysical Research Communications, 2003, 310, 215-221.                                                                                                  | 2.1  | 5         |
| 49 | Electron Transfer between Membrane Complexes and Soluble Proteins in Photosynthesis. Accounts of Chemical Research, 2003, 36, 798-805.                                                                                                                       | 15.6 | 131       |
| 50 | Role of Hydrophobic Interactions in the Flavodoxin Mediated Electron Transfer from Photosystem I<br>to Ferredoxin-NADP+Reductase inAnabaenaPCC 7119â€. Biochemistry, 2003, 42, 2036-2045.                                                                    | 2.5  | 29        |
| 51 | Mutagenesis of Prochlorothrix Plastocyanin Reveals Additional Features in Photosystem I<br>Interactions. Journal of Biological Chemistry, 2003, 278, 8179-8183.                                                                                              | 3.4  | 7         |
| 52 | A comparative structural and functional analysis of cytochromecM, cytochromec6and plastocyanin from the cyanobacteriumSynechocystissp. PCC 6803. FEBS Letters, 2002, 517, 50-54.                                                                             | 2.8  | 27        |
| 53 | Anabaena sp. PCC 7119 Flavodoxin as Electron Carrier from Photosystem I to<br>Ferredoxin-NADP+Reductase. Journal of Biological Chemistry, 2002, 277, 22338-22344.                                                                                            | 3.4  | 31        |
| 54 | An evolutionary analysis of the reaction mechanisms of photosystem I reduction by cytochrome c6 and plastocyanin. Bioelectrochemistry, 2002, 55, 41-45.                                                                                                      | 4.6  | 66        |

MANUEL HERVÃIS

| #  | Article                                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Role of electrostatics in the interaction between plastocyanin and photosystem I of the cyanobacterium Phormidium laminosum. FEBS Journal, 2002, 269, 5893-5902.                                                                                         | 0.2 | 12        |
| 56 | Mutations in both leucine 12 and lysine 33 in plastocyanin from Synechocystis sp. PCC 6803 induce drastic changes in the hydrophobic interactions with Photosystem I. Photosynthesis Research, 2002, 72, 223-230.                                        | 2.9 | 3         |
| 57 | Crystal structure of low-potential cytochrome c 549 from Synechocystis sp. PCC 6803 at 1.21ÂÃ<br>resolution. Journal of Biological Inorganic Chemistry, 2001, 6, 324-332.                                                                                | 2.6 | 40        |
| 58 | A comparative study of the thermal stability of plastocyanin, cytochrome c(6) and Photosystem I in thermophilic and mesophilic cyanobacteria. Photosynthesis Research, 2001, 70, 281-289.                                                                | 2.9 | 12        |
| 59 | The Unique Proline of the Prochlorothrix hollandica Plastocyanin Hydrophobic Patch Impairs<br>Electron Transfer to Photosystem I. Journal of Biological Chemistry, 2001, 276, 37501-37505.                                                               | 3.4 | 12        |
| 60 | A Single Arginyl Residue in Plastocyanin and in Cytochrome c6 from the Cyanobacterium Anabaenasp.<br>PCC 7119 Is Required for Efficient Reduction of Photosystem I. Journal of Biological Chemistry, 2001,<br>276, 601-605.                              | 3.4 | 42        |
| 61 | Negatively charged residues in the H loop of PsaB subunit in Photosystem I from Synechocystis sp. PCC<br>6803 appear to be responsible for electrostatic repulsions with plastocyanin*. Photosynthesis<br>Research, 2000, 65, 63-68.                     | 2.9 | 5         |
| 62 | Site-directed Mutagenesis of Cytochromec 6 from Synechocystissp. PCC 6803. Journal of Biological Chemistry, 1999, 274, 13292-13297.                                                                                                                      | 3.4 | 43        |
| 63 | Oxidizing Side of the Cyanobacterial Photosystem I. Journal of Biological Chemistry, 1999, 274,<br>19048-19054.                                                                                                                                          | 3.4 | 39        |
| 64 | Site-directed Mutagenesis of Cytochromec 6 from Anabaena Species PCC 7119. Journal of Biological Chemistry, 1999, 274, 33565-33570.                                                                                                                      | 3.4 | 40        |
| 65 | Title is missing!. Photosynthesis Research, 1999, 62, 241-250.                                                                                                                                                                                           | 2.9 | 2         |
| 66 | Photosensitized electron transfer reactions of cytochrome c4 from Pseudomonas stutzeri with flavins and methyl viologen. Inorganica Chimica Acta, 1998, 272, 109-114.                                                                                    | 2.4 | 11        |
| 67 | Title is missing!. Photosynthesis Research, 1998, 57, 93-100.                                                                                                                                                                                            | 2.9 | 13        |
| 68 | Homology predicted structure and comparison with the secondary structure from NMR data for plastocyanin for the cyanobacterium Synechocystis sp. PCC 6803. Inorganica Chimica Acta, 1998, 275-276, 73-89.                                                | 2.4 | 6         |
| 69 | Structural and magnetic characterisation of the haem core of ferricytochromes c 6. Journal of<br>Biological Inorganic Chemistry, 1998, 3, 68-73.                                                                                                         | 2.6 | 8         |
| 70 | Cloning and Correct Expression inEscherichia coliof thepetE andpetJ Genes Respectively Encoding<br>Plastocyanin and Cytochromec6from the CyanobacteriumAnabaenasp. PCC 7119. Biochemical and<br>Biophysical Research Communications, 1998, 243, 302-306. | 2.1 | 43        |
| 71 | The 2.15 Ã crystal structure of a triple mutant plastocyanin from the cyanobacterium Synechocystis sp. PCC 6803 1 1Edited by R. Huber. Journal of Molecular Biology, 1998, 275, 327-336.                                                                 | 4.2 | 45        |
|    |                                                                                                                                                                                                                                                          |     |           |

From Cytochrome C6 to Plastocyanin. An Evolutionary Approach. , 1998, , 1499-1504.

2

MANUEL HERVÃIS

| #  | Article                                                                                                                                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Changes in the Reaction Mechanism of Electron Transfer from Plastocyanin to Photosystem I in the<br>CyanobacteriumSynechocystissp. PCC 6803 As Induced by Site-Directed Mutagenesis of the Copper<br>Proteinâ€. Biochemistry, 1997, 36, 10125-10130.                                                                                                | 2.5 | 42        |
| 74 | Co-evolution of cytochrome c 6 and plastocyanin, mobile proteins transferring electrons from cytochrome b 6f  to photosystem I. Journal of Biological Inorganic Chemistry, 1997, 2, 11-22.                                                                                                                                                          | 2.6 | 63        |
| 75 | Reduction of photosystem I by cytochrome c6 and plastocyanin: molecular recognition and reaction mechanism. Bioelectrochemistry, 1997, 42, 249-254.                                                                                                                                                                                                 | 1.0 | 5         |
| 76 | A Comparative Thermodynamic Analysis by Laser-Flash Absorption Spectroscopy of Photosystem I<br>Reduction by Plastocyanin and Cytochrome c6 in Anabaena PCC 7119, Synechocystis PCC 6803, and<br>Spinach. Biochemistry, 1996, 35, 2693-2698.                                                                                                        | 2.5 | 58        |
| 77 | The solution structure of cytochrome c 6 from the green alga Monoraphidium braunii. Journal of<br>Biological Inorganic Chemistry, 1996, 1, 330-340.                                                                                                                                                                                                 | 2.6 | 26        |
| 78 | A Comparative Kinetic Analysis of the Flavin-Photosensitized Oxidation and Reduction of Plastocyanin and Cytochrome c6from Different Organisms. Photochemistry and Photobiology, 1996, 63, 86-91.                                                                                                                                                   | 2.5 | 5         |
| 79 | Cytochromec6from the green algaMonoraphidium braunii. Crystallization and preminary diffraction studies. Acta Crystallographica Section D: Biological Crystallography, 1995, 51, 232-234.                                                                                                                                                           | 2.5 | 7         |
| 80 | Ab initio determination of the crystal structure of cytochrome c6 and comparison with plastocyanin.<br>Structure, 1995, 3, 1159-1169.                                                                                                                                                                                                               | 3.3 | 146       |
| 81 | pH-dependent photoreactions of the high- and low-potential forms of cytochrome b559 in spinach PS<br>II-enriched membranes. Photosynthesis Research, 1995, 46, 185-191.                                                                                                                                                                             | 2.9 | 21        |
| 82 | Purification and Physicochemical Properties of the Low Potential Cytochrome C549 from the<br>Cyanobacterium Synechocystis Sp PCC 6803. Archives of Biochemistry and Biophysics, 1995, 318, 46-52.                                                                                                                                                   | 3.0 | 42        |
| 83 | Site-Specific Mutagenesis Demonstrates That the Structural Requirements for Efficient Electron<br>Transfer in Anabaena Ferredoxin and Flavodoxin Are Highly Dependent on the Reaction Partner:<br>Kinetic Studies with Photosystem I, Ferredoxin:NADP+ Reductase, and Cytochrome c. Archives of<br>Biochemistry and Biophysics, 1995, 321, 229-238. | 3.0 | 38        |
| 84 | Laser-Flash Kinetic Analysis of the Fast Electron Transfer from Plastocyanin and Cytochrome c6 to<br>Photosystem I. Experimental Evidence on the Evolution of the Reaction Mechanism. Biochemistry, 1995,<br>34, 11321-11326.                                                                                                                       | 2.5 | 151       |
| 85 | Photoreactions of High- and Low-Potential Cytochrome b559 during Photoinhibition. , 1995, , 3215-3218.                                                                                                                                                                                                                                              |     | Ο         |
| 86 | A thermodynamic study by laser-flash photolysis of plastocyanin and cytochrome c6 oxidation by photosystem I from the green alga Monoraphidium braunii. FEBS Journal, 1994, 222, 1001-1007.                                                                                                                                                         | 0.2 | 29        |
| 87 | LASER FLASH-INDUCED PHOTOREDUCTION OF PHOTOSYNTHETIC FERREDOXINS AND FLAVODOXIN BY 5-DEAZARIBOFLAVIN AND BY A. Photochemistry and Photobiology, 1994, 60, 231-236.                                                                                                                                                                                  | 2.5 | 10        |
| 88 | Laser flash kinetic analysis of Synechocystis PCC 6803 cytochrome c6 and plastocyanin oxidation by<br>Photosystem I. Biochimica Et Biophysica Acta - Bioenergetics, 1994, 1184, 235-241.                                                                                                                                                            | 1.0 | 57        |
| 89 | Cloning and correct expression inE. coliof thepetJ gene encoding<br>cytochromec6fromSynechocystis6803. FEBS Letters, 1994, 347, 173-177.                                                                                                                                                                                                            | 2.8 | 41        |
| 90 | Redox Properties of Cytochrome b559 in Photosynthetic Membranes from the Cyanobacterium<br>Synechocystis sp. PCC 6803. Journal of Plant Physiology, 1994, 144, 454-461.                                                                                                                                                                             | 3.5 | 9         |

Manuel HervÃis

| #   | Article                                                                                                                                                                                                         | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | A comparative laser-flash absorption spectroscopy study of Anabaena PCC 7119 plastocyanin and cytochrome c6 photooxidation by photosystem I particles. FEBS Journal, 1993, 213, 1133-1138.                      | 0.2 | 41        |
| 92  | Cytochrome c6 from Monoraphidium braunii. A cytochrome with an unusual heme axial coordination.<br>FEBS Journal, 1993, 216, 329-341.                                                                            | 0.2 | 39        |
| 93  | Synechocystis6803 plastocyanin isolated from both the cyanobacterium andE. colitransformed cells are identical. FEBS Letters, 1993, 319, 257-260.                                                               | 2.8 | 37        |
| 94  | A comparative laser-flash absorption spectroscopy study of algal plastocyanin and cytochrome c552 photooxidation by photosystem I particles from spinach. FEBS Journal, 1992, 203, 115-120.                     | 0.2 | 63        |
| 95  | A laser flash absorption spectroscopy study of Anabaena sp. PCC 7119 flavodoxin photoreduction by photosystem I particles from spinach. FEBS Letters, 1992, 313, 239-242.                                       | 2.8 | 41        |
| 96  | Electron transfer reactions in both the oxidizing and reducing sites of photosystem I. Journal of Electroanalytical Chemistry, 1992, 343, 205-212.                                                              | 3.8 | 0         |
| 97  | Electron transfer reactions in both the oxidizing and reducing sites of photosystem I.<br>Bioelectrochemistry, 1992, 28, 205-212.                                                                               | 1.0 | 0         |
| 98  | A LASER FLASH SPECTROSCOPY STUDY OF THE KINETICS OF ELECTRON TRANSFER FROM SPINACH<br>PHOTOSYSTEM I TO SPINACH AND ALGAL FERREDOXINS. Photochemistry and Photobiology, 1992, 56,<br>319-324.                    | 2.5 | 28        |
| 99  | Flavin Laser Flash Photolysis Studies of the Electron Transfer Mechanism in Redox Proteins. , 1992, , 319-331.                                                                                                  |     | Ο         |
| 100 | Flavin-photosensitized oxidation of reduced c-type cytochromes. Reaction mechanism and comparison with photoreduction of oxidized cytochromes by flavin semiquinones. FEBS Journal, 1990, 191, 531-536.         | 0.2 | 13        |
| 101 | Sequential transduction of light into redox and acid—base energy in photosynthesis.<br>Bioelectrochemistry, 1990, 23, 105-128.                                                                                  | 1.0 | 9         |
| 102 | Distinctive stability of the reduced and oxidized forms of high-potential cytochrome b-559 in photosystem II particles. Plant Science, 1990, 68, 71-75.                                                         | 3.6 | 23        |
| 103 | Isolation and Comparison of Molecular Properties of Cytochrome £-559 from Both Spinach Thylakoids<br>and PS II Particles. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 1989, 44, 415-422. | 1.4 | 9         |
| 104 | Location of cytochrome b-559 between photosystem II and Photosystem I in noncyclic electron transport. Biochimica Et Biophysica Acta - Bioenergetics, 1989, 975, 244-251.                                       | 1.0 | 17        |
| 105 | Redox and acid-base characterization of cytochrome b-559 in photosystem II particles. FEBS Journal, 1988, 171, 449-455.                                                                                         | 0.2 | 68        |
| 106 | Restoration of high-potential cytochrome b-564 by integration of baker's yeast complex III into liposomes. Biochemical and Biophysical Research Communications, 1988, 152, 981-986.                             | 2.1 | 3         |
| 107 | Coupling between redox and acid-base energy by cytochrome b-564 in baker's yeast mitochondria.<br>Biochemical and Biophysical Research Communications, 1984, 124, 807-814.                                      | 2.1 | 5         |
| 108 | pH-Dependent interconversion between the two redox forms of chloroplast cytochrome b-559.<br>Bioelectrochemistry, 1983, 10, 413-426.                                                                            | 1.0 | 9         |

| #   | Article                                                                                                                           | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Energy transduction by bioelectrochemical systems. Bioelectrochemistry, 1983, 11, 193-230.                                        | 1.0 | 16        |
| 110 | Plastocyanin and Cytochromec6: the Soluble Electron Carriers between the Cytochromeb6f Complex and Photosystem I. , 0, , 181-200. |     | 11        |