Hannah S Leese

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9347153/publications.pdf

Version: 2024-02-01

567281 501196 29 841 15 28 citations h-index g-index papers 29 29 29 1260 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	High- <i>k</i> dielectric screen-printed inks for mechanical energy harvesting devices. Materials Advances, 2022, 3, 1780-1790.	5.4	5
2	Development of a high sensitivity RT-PCR assay for detection of SARS-CoV-2 in individual and pooled nasopharyngeal samples. Scientific Reports, 2022, 12, 5369.	3.3	8
3	Molecularly imprinted polymers in diagnostics: accessing analytes in biofluids. Journal of Materials Chemistry B, 2022, 10, 7418-7449.	5.8	31
4	Grapheneâ€Based Nucleants for Protein Crystallization. Advanced Functional Materials, 2022, 32, .	14.9	4
5	Hydrogelâ€Forming Microneedles: Current Advancements and Future Trends. Macromolecular Bioscience, 2021, 21, e2000307.	4.1	160
6	Molecular diagnostics in the era of COVID-19. Analytical Methods, 2021, 13, 3744-3763.	2.7	10
7	Assessing the Conversion of Various Nylon Polymers in the Hydrothermal Liquefaction of Macroalgae. Environments - MDPI, 2021, 8, 34.	3.3	14
8	Optimization of Cortisol-Selective Molecularly Imprinted Polymers Enabled by Molecular Dynamics Simulations. ACS Applied Bio Materials, 2021, 4, 7243-7253.	4.6	13
9	Graphene oxide composite fibres for therapeutic fabrics. JPhys Materials, 2021, 4, 044010.	4.2	1
10	Co-processing of common plastics with pistachio hulls via hydrothermal liquefaction. Waste Management, 2020, 102, 351-361.	7.4	58
11	Valorizing Plastic-Contaminated Waste Streams through the Catalytic Hydrothermal Processing of Polypropylene with Lignocellulose. ACS Omega, 2020, 5, 20586-20598.	3.5	21
12	Inorganic Nanotube Mesophases Enable Strong Self-Healing Fibers. ACS Nano, 2020, 14, 5570-5580.	14.6	17
13	Interfacially-grafted single-walled carbon nanotube / poly (vinyl alcohol) composite fibers. Carbon, 2019, 146, 162-171.	10.3	28
14	Depleting Depletion: Maintaining Single-Walled Carbon Nanotube Dispersions after Graft-To Polymer Functionalization. Langmuir, 2018, 34, 15396-15402.	3.5	5
15	Reductive dissolution of supergrowth carbon nanotubes for tougher nanocomposites by reactive coagulation spinning. Nanoscale, 2017, 9, 8764-8773.	5.6	18
16	Thermochemical functionalisation of graphenes with minimal framework damage. Chemical Science, 2017, 8, 6149-6154.	7.4	4
17	<i>Grafting from /i> versus <i>Grafting to /i> Approaches for the Functionalization of Graphene Nanoplatelets with Poly (methyl methacrylate). Macromolecules, 2017, 50, 7070-7079.</i></i>	4.8	58
18	Exploring Carbon Nanomaterial Diversity for Nucleation of Protein Crystals. Scientific Reports, 2016, 6, 20053.	3.3	23

#	Article	IF	CITATIONS
19	Electro-osmotic flow enhancement in carbon nanotube membranes. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374, 20150268.	3.4	8
20	Reductively PEGylated carbon nanomaterials and their use to nucleate 3D protein crystals: a comparison of dimensionality. Chemical Science, 2016, 7, 2916-2923.	7.4	40
21	Carbon nanotube membranes: From flow enhancement to permeability. Journal of Membrane Science, 2015, 475, 266-272.	8.2	90
22	Controlled hydrothermal pore reduction in anodic alumina membranes. Nanoscale, 2014, 6, 13952-13957.	5.6	4
23	Electroosmotic flow in nanoporous membranes in the region of electric double layer overlap. Microfluidics and Nanofluidics, 2014, 16, 711-719.	2.2	11
24	Wetting behaviour of hydrophilic and hydrophobic nanostructured porous anodic alumina. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 420, 53-58.	4.7	52
25	Study of Fluid and Transport Properties of Porous Anodic Aluminum Membranes by Dynamic Atomic Force Microscopy. Langmuir, 2013, 29, 8969-8977.	3.5	6
26	Sustained Frictional Instabilities on Nanodomed Surfaces: Stick–Slip Amplitude Coefficient. ACS Nano, 2013, 7, 10850-10862.	14.6	27
27	Wetting in Carbon Inorganic and Organic Nanotubes and Nanochannels. , 2013, , .		0
28	Water flow enhancement in hydrophilic nanochannels. Nanoscale, 2012, 4, 2621.	5.6	96
29	Amontonian frictional behaviour of nanostructured surfaces. Physical Chemistry Chemical Physics, 2011, 13, 9318.	2.8	29