Xiaojun Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9346181/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	KPNA6 is a Cofactor of ANP32A/B in Supporting Influenza Virus Polymerase Activity. Microbiology Spectrum, 2022, 10, e0207321.	3.0	5
2	Development of a duplex realâ€ŧime PCR assay for simultaneous detection and differentiation of Theileria equi and Babesia caballi. Transboundary and Emerging Diseases, 2022, , .	3.0	1
3	Keap1 recognizes EIAV early accessory protein Rev to promote antiviral defense. PLoS Pathogens, 2022, 18, e1009986.	4.7	7
4	Development of a Test Card Based on Colloidal Gold Immunochromatographic Strips for Rapid Detection of Antibodies against Theileria equi and Babesia caballi. Microbiology Spectrum, 2022, 10, e0241121.	3.0	4
5	Prevalence and molecular epidemiology of equine piroplasmosis in China: a neglected tick-borne disease. Science China Life Sciences, 2022, 65, 445-447.	4.9	2
6	Equine lentivirus counteracts SAMHD1 restriction by Rev-mediated degradation of SAMHD1 via the BECN1-dependent lysosomal pathway. Autophagy, 2021, 17, 2800-2817.	9.1	8
7	Truncation of the Cytoplasmic Tail of Equine Infectious Anemia Virus Increases Virion Production by Improving Env Cleavage and Plasma Membrane Localization. Journal of Virology, 2021, 95, e0108721.	3.4	3
8	Multiple RNA virus matrix proteins interact with SLD5 to manipulate host cell cycle. Journal of General Virology, 2021, 102, .	2.9	1
9	Development of an EvaGreen-based real-time PCR assay for detection of Aleutian mink disease virus. Journal of Virological Methods, 2020, 275, 113751.	2.1	3
10	Selective usage of ANP32 proteins by influenza B virus polymerase: Implications in determination of host range. PLoS Pathogens, 2020, 16, e1008989.	4.7	20
11	A multivalent vaccine candidate targeting enterotoxigenic Escherichia coli fimbriae for broadly protecting against porcine post-weaning diarrhea. Veterinary Research, 2020, 51, 93.	3.0	16
12	<i>Env</i> diversity-dependent protection of the attenuated equine infectious anaemia virus vaccine. Emerging Microbes and Infections, 2020, 9, 1309-1320.	6.5	13
13	The N-glycosylation of Equine Tetherin Affects Antiviral Activity by Regulating Its Subcellular Localization. Viruses, 2020, 12, 220.	3.3	7
14	A unique feature of swine ANP32A provides susceptibility to avian influenza virus infection in pigs. PLoS Pathogens, 2020, 16, e1008330.	4.7	32
15	Title is missing!. , 2020, 16, e1008989.		0
16	Title is missing!. , 2020, 16, e1008989.		0
17	Title is missing!. , 2020, 16, e1008989.		0
18	Title is missing!. , 2020, 16, e1008989.		0

#	Article	IF	CITATIONS
19	Title is missing!. , 2020, 16, e1008989.		Ο
20	Title is missing!. , 2020, 16, e1008989.		0
21	Attenuation of Equine Lentivirus Alters Mitochondrial Protein Expression Profile from Inflammation to Apoptosis. Journal of Virology, 2019, 93, .	3.4	3
22	High-Efficiency Rescue of Equine Infectious Anemia Virus from a CMV-Driven Infectious Clone. Virologica Sinica, 2019, 34, 725-728.	3.0	7
23	ANP32A and ANP32B are key factors in the Rev-dependent CRM1 pathway for nuclear export of HIV-1 unspliced mRNA. Journal of Biological Chemistry, 2019, 294, 15346-15357.	3.4	16
24	Equine Influenza Virus in Asia: Phylogeographic Pattern and Molecular Features Reveal Circulation of an Autochthonous Lineage. Journal of Virology, 2019, 93, .	3.4	18
25	Fundamental Contribution and Host Range Determination of ANP32A and ANP32B in Influenza A Virus Polymerase Activity. Journal of Virology, 2019, 93, .	3.4	63
26	Characterization of EIAV env Quasispecies during Long-Term Passage In Vitro: Gradual Loss of Pathogenicity. Viruses, 2019, 11, 380.	3.3	5
27	Equine Mx1 Restricts Influenza A Virus Replication by Targeting at Distinct Site of its Nucleoprotein. Viruses, 2019, 11, 1114.	3.3	9
28	Characterization of Equine Infectious Anemia Virus Long Terminal Repeat Quasispecies In Vitro and In Vivo. Journal of Virology, 2018, 92, .	3.4	7
29	Development of an antigen-capture ELISA for the quantitation of equine arteritis virus in culture supernatant. Archives of Virology, 2018, 163, 1469-1478.	2.1	2
30	Rhesus monkey TRIM5α protein SPRY domain contributes to AP-1 activation. Journal of Biological Chemistry, 2018, 293, 2661-2674.	3.4	6
31	Development and Application of an Indirect ELISA for the Detection of gp45 Antibodies to Equine Infectious Anemia Virus. Journal of Equine Veterinary Science, 2018, 62, 76-80.	0.9	7
32	Optimization and application of a DNA-launched infectious clone of equine arteritis virus. Applied Microbiology and Biotechnology, 2018, 102, 413-423.	3.6	2
33	Strain-Specific Antagonism of the Human H1N1 Influenza A Virus against Equine Tetherin. Viruses, 2018, 10, 264.	3.3	7
34	Equine Myxovirus Resistance Protein 2 Restricts Lentiviral Replication by Blocking Nuclear Uptake of Capsid Protein. Journal of Virology, 2018, 92, .	3.4	13
35	A pilot study on interaction between donkey tetherin and EIAV stains with different virulent and replication characteristics. Microbial Pathogenesis, 2017, 106, 65-68.	2.9	2
36	Characteristics of Human Endometrium-Derived Mesenchymal Stem Cells and Their Tropism to Endometriosis. Stem Cells International, 2017, 2017, 1-9.	2.5	35

#	Article	IF	CITATIONS
37	Clues for two-step virion infectivity factor regulation by core binding factor beta. Journal of General Virology, 2017, 98, 1113-1121.	2.9	2
38	The integration of a macrophage-adapted live vaccine strain of equine infectious anaemia virus (EIAV) in the horse genome. Journal of General Virology, 2017, 98, 2596-2606.	2.9	1
39	The nucleolar protein GLTSCR2 is required for efficient viral replication. Scientific Reports, 2016, 6, 36226.	3.3	13
40	Equine schlafen 11 restricts the production of equine infectious anemia virus via a codon usage-dependent mechanism. Virology, 2016, 495, 112-121.	2.4	27
41	Identification and characterization of a common B-cell epitope on EIAV capsid proteins. Applied Microbiology and Biotechnology, 2016, 100, 10531-10542.	3.6	10
42	Double-stranded-RNA-specific adenosine deaminase 1 (ADAR1) is proposed to contribute to the adaptation of equine infectious anemia virus from horses to donkeys. Archives of Virology, 2016, 161, 2667-2672.	2.1	8
43	Structural and Functional Study of Apoptosis-linked Gene-2·Heme-binding Protein 2 Interactions in HIV-1 Production. Journal of Biological Chemistry, 2016, 291, 26670-26685.	3.4	19
44	Genetic Evolution during the development of an attenuated EIAV vaccine. Retrovirology, 2016, 13, 9.	2.0	24
45	Equine Infectious Anemia Virus Gag Assembly and Export Are Directed by Matrix Protein through trans -Golgi Networks and Cellular Vesicles. Journal of Virology, 2016, 90, 1824-1838.	3.4	10
46	Infection with equine infectious anemia virus vaccine strain EIAVDLV121 causes no visible histopathological lesions in target organs in association with restricted viral replication and unique cytokine response. Veterinary Immunology and Immunopathology, 2016, 170, 30-40.	1.2	2
47	Structural and functional characterization of EIAV gp45 fusion peptide proximal region and asparagine-rich layer. Virology, 2016, 491, 64-72.	2.4	5
48	Regulation of Rev expression by the equine infectious anaemia virus tat-rev mRNA Kozak sequence and its potential influence on viral replication. Journal of General Virology, 2016, 97, 2421-2426.	2.9	1
49	Mice transgenic for equine cyclin T1 and ELR1 are susceptible to equine infectious anemia virus infection. Retrovirology, 2015, 12, 36.	2.0	5
50	Characterization of Equine Infectious Anemia Virus Integration in the Horse Genome. Viruses, 2015, 7, 3241-3260.	3.3	7
51	Double-stranded RNA-specific adenosine deaminase 1 (ADAR1) promotes EIAV replication and infectivity. Virology, 2015, 476, 364-371.	2.4	12
52	Proteomic alteration of equine monocyteâ€derived macrophages infected with equine infectious anemia virus. Proteomics, 2015, 15, 1843-1858.	2.2	15
53	Similar regulation of two distinct UL24 promoters by regulatory proteins of equine herpesvirus type 1 (EHVâ€1). FEBS Letters, 2015, 589, 1467-1475.	2.8	0
54	Encephalomyocarditis Virus 3C Protease Relieves TRAF Family Member-associated NF-ήB Activator (TANK) Inhibitory Effect on TRAF6-mediated NF-ήB Signaling through Cleavage of TANK. Journal of Biological Chemistry, 2015, 290, 27618-27632.	3.4	45

#	Article	IF	CITATIONS
55	A Unique Evolution of the S2 Gene of Equine Infectious Anemia Virus in Hosts Correlated with Particular Infection Statuses. Viruses, 2014, 6, 4265-4279.	3.3	2
56	Development of antigenÂcapture ELISA for the quantification of EIAV p26 protein. Applied Microbiology and Biotechnology, 2014, 98, 9073-9081.	3.6	16
57	Equine Tetherin Blocks Retrovirus Release and Its Activity Is Antagonized by Equine Infectious Anemia Virus Envelope Protein. Journal of Virology, 2014, 88, 1259-1270.	3.4	40
58	Development of a single-tube duplex EvaGreen real-time PCR for the detection and identification of EHV-1 and EHV-4. Applied Microbiology and Biotechnology, 2014, 98, 4179-4186.	3.6	11
59	Core-Binding Factor Subunit Beta Is Not Required for Non-Primate Lentiviral Vif-Mediated APOBEC3 Degradation. Journal of Virology, 2014, 88, 12112-12122.	3.4	25
60	Equine Viperin Restricts Equine Infectious Anemia Virus Replication by Inhibiting the Production and/or Release of Viral Gag, Env, and Receptor via Distortion of the Endoplasmic Reticulum. Journal of Virology, 2014, 88, 12296-12310.	3.4	32
61	Antiviral potency and functional analysis of tetherin orthologues encoded by horse and donkey. Virology Journal, 2014, 11, 151.	3.4	2
62	Infection of equine monocyte-derived macrophages with an attenuated equine infectious anemia virus (EIAV) strain induces a strong resistance to the infection by a virulent EIAV strain. Veterinary Research, 2014, 45, 82.	3.0	10
63	TRIMe7-CypA, an alternative splicing isoform of TRIMCyp in rhesus macaque, negatively modulates TRIM51± activity. Biochemical and Biophysical Research Communications, 2014, 446, 470-474.	2.1	5
64	Epidemiological Investigation of Equine Piroplasmosis in China by Enzyme-Linked Immunosorbent Assays. Journal of Veterinary Medical Science, 2014, 76, 549-552.	0.9	12
65	Comprehensive analysis of the overall codon usage patterns in equine infectious anemia virus. Virology Journal, 2013, 10, 356.	3.4	9
66	Overexpression of microRNA gga-miR-1650 decreases the replication of avian leukosis virus subgroup J in infected cells. Journal of General Virology, 2013, 94, 2287-2296.	2.9	11
67	Inhibition of virus replication and induction of human tetherin gene expression by equine IFN-α1. Veterinary Immunology and Immunopathology, 2013, 156, 107-113.	1.2	3
68	Genetic analysis of the PB1-F2 gene of equine influenza virus. Virus Genes, 2013, 47, 250-258.	1.6	12
69	Identification of Molecular Determinants from Moloney Leukemia Virus 10 Homolog (MOV10) Protein for Virion Packaging and Anti-HIV-1 Activity. Journal of Biological Chemistry, 2012, 287, 1220-1228.	3.4	49
70	Complete Genomic Sequence of an Equine Herpesvirus Type 8 Wh Strain Isolated from China. Journal of Virology, 2012, 86, 5407-5407.	3.4	19
71	Identification of APOBEC3DE as Another Antiretroviral Factor from the Human APOBEC Family. Journal of Virology, 2011, 85, 5243-5243.	3.4	0
72	Analysis of Human APOBEC3H Haplotypes and Anti-Human Immunodeficiency Virus Type 1 Activity. Journal of Virology, 2011, 85, 3142-3152.	3.4	99

#	Article	IF	CITATIONS
73	Identification of a Critical T(Q/D/E)x ₅ ADx ₂ (I/L) Motif from Primate Lentivirus Vif Proteins That Regulate APOBEC3G and APOBEC3F Neutralizing Activity. Journal of Virology, 2010, 84, 8561-8570.	3.4	33
74	Moloney Leukemia Virus 10 (MOV10) Protein Inhibits Retrovirus Replication. Journal of Biological Chemistry, 2010, 285, 14346-14355.	3.4	102
75	Identification of a Novel WxSLVK Motif in the N Terminus of Human Immunodeficiency Virus and Simian Immunodeficiency Virus Vif That Is Critical for APOBEC3G and APOBEC3F Neutralization. Journal of Virology, 2009, 83, 8544-8552.	3.4	84
76	Genetic variation in the long terminal repeat associated with the transition of Chinese equine infectious anemia virus from virulence to avirulence. Virus Genes, 2009, 38, 285-288.	1.6	9
77	A novel HIV-1 restriction factor that is biologically distinct from APOBEC3 cytidine deaminases in a human T cell line CEM.NKR. Retrovirology, 2009, 6, 31.	2.0	17
78	Human Cytidine Deaminase APOBEC3H Restricts HIV-1 Replication. Journal of Biological Chemistry, 2008, 283, 11606-11614.	3.4	103
79	APOBEC3G and APOBEC3F Require an Endogenous Cofactor to Block HIV-1 Replication. PLoS Pathogens, 2008, 4, e1000095.	4.7	28
80	Demonstration of a Novel HIV-1 Restriction Phenotype from a Human T Cell Line. PLoS ONE, 2008, 3, e2796.	2.5	14
81	Biochemical Differentiation of APOBEC3F and APOBEC3G Proteins Associated with HIV-1 Life Cycle. Journal of Biological Chemistry, 2007, 282, 1585-1594.	3.4	49
82	Identification of APOBEC3DE as Another Antiretroviral Factor from the Human APOBEC Family. Journal of Virology, 2006, 80, 10522-10533.	3.4	231