Joel B Dacks

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9345781/publications.pdf Version: 2024-02-01

LOFI R DACKS

#	Article	IF	CITATIONS
1	Draft Genome Sequence of the Sexually Transmitted Pathogen <i>Trichomonas vaginalis</i> . Science, 2007, 315, 207-212.	12.6	731
2	Pan genome of the phytoplankton Emiliania underpins its global distribution. Nature, 2013, 499, 209-213.	27.8	448
3	Phylogenomic analyses support the monophyly of Excavata and resolve relationships among eukaryotic "supergroups― Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 3859-3864.	7.1	444
4	The Genome of Naegleria gruberi Illuminates Early Eukaryotic Versatility. Cell, 2010, 140, 631-642.	28.9	399
5	Algal genomes reveal evolutionary mosaicism and the fate of nucleomorphs. Nature, 2012, 492, 59-65.	27.8	377
6	A Eukaryote without a Mitochondrial Organelle. Current Biology, 2016, 26, 1274-1284.	3.9	302
7	Evolution of the eukaryotic membrane-trafficking system: origin, tempo and mode. Journal of Cell Science, 2007, 120, 2977-2985.	2.0	245
8	Evolution of the Multivesicular Body ESCRT Machinery; Retention Across the Eukaryotic Lineage. Traffic, 2008, 9, 1698-1716.	2.7	243
9	The Fifth Adaptor Protein Complex. PLoS Biology, 2011, 9, e1001170.	5.6	241
10	Chromerid genomes reveal the evolutionary path from photosynthetic algae to obligate intracellular parasites. ELife, 2015, 4, e06974.	6.0	198
11	Evolution of Filamentous Plant Pathogens: Gene Exchange across Eukaryotic Kingdoms. Current Biology, 2006, 16, 1857-1864.	3.9	197
12	Origin of H1 linker histones. FASEB Journal, 2001, 15, 34-42.	0.5	192
13	ARF GTPases and their GEFs and GAPs: concepts and challenges. Molecular Biology of the Cell, 2019, 30, 1249-1271.	2.1	188
14	Control systems for membrane fusion in the ancestral eukaryote; evolution of tethering complexes and SM proteins. BMC Evolutionary Biology, 2007, 7, 29.	3.2	186
15	Evolutionary Origins of the Eukaryotic Shikimate Pathway: Gene Fusions, Horizontal Gene Transfer, and Endosymbiotic Replacements. Eukaryotic Cell, 2006, 5, 1517-1531.	3.4	170
16	Molecular paleontology and complexity in the last eukaryotic common ancestor. Critical Reviews in Biochemistry and Molecular Biology, 2013, 48, 373-396.	5.2	170
17	The First Sexual Lineage and the Relevance of Facultative Sex. Journal of Molecular Evolution, 1999, 48, 779-783.	1.8	143
18	Sculpting the endomembrane system in deep time: High resolution phylogenetics of Rab GTPases. Journal of Cell Science, 2012, 125, 2500-8.	2.0	139

#	Article	IF	CITATIONS
19	Kinetoplastid Phylogenomics Reveals the Evolutionary Innovations Associated with the Origins of Parasitism. Current Biology, 2016, 26, 161-172.	3.9	137
20	A Role for the Ancient SNARE Syntaxin 17 in Regulating Mitochondrial Division. Developmental Cell, 2015, 32, 304-317.	7.0	126
21	Phylogeny of endocytic components yields insight into the process of nonendosymbiotic organelle evolution. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 588-593.	7.1	120
22	Reconstructing/Deconstructing the Earliest Eukaryotes. Cell, 2001, 107, 419-425.	28.9	115
23	Characterization of TSET, an ancient and widespread membrane trafficking complex. ELife, 2014, 3, e02866.	6.0	114
24	First and last ancestors: reconstructing evolution of the endomembrane system with ESCRTs, vesicle coat proteins, and nuclear pore complexes. Current Opinion in Cell Biology, 2009, 21, 4-13.	5.4	112
25	Eukaryotic systematics: a user's guide for cell biologists and parasitologists. Parasitology, 2011, 138, 1638-1663.	1.5	106
26	Evolutionary reconstruction of the retromer complex and its function in <i>Trypanosoma brucei</i> . Journal of Cell Science, 2011, 124, 1496-1509.	2.0	102
27	Extreme genome diversity in the hyper-prevalent parasitic eukaryote Blastocystis. PLoS Biology, 2017, 15, e2003769.	5.6	99
28	Transcriptome, proteome and draft genome of Euglena gracilis. BMC Biology, 2019, 17, 11.	3.8	98
29	Ancient Homology of the Mitochondrial Contact Site and Cristae Organizing System Points to an Endosymbiotic Origin of Mitochondrial Cristae. Current Biology, 2015, 25, 1489-1495.	3.9	95
30	Reconstructing the Evolution of the Endocytic System: Insights from Genomics and Molecular Cell Biology. Advances in Experimental Medicine and Biology, 2007, 607, 84-96.	1.6	94
31	The Ancient and Widespread Nature of the ER–Mitochondria Encounter Structure. Molecular Biology and Evolution, 2013, 30, 2044-2049.	8.9	90
32	Rab protein evolution and the history of the eukaryotic endomembrane system. Cellular and Molecular Life Sciences, 2010, 67, 3449-3465.	5.4	77
33	The changing view of eukaryogenesis – fossils, cells, lineages and how they all come together. Journal of Cell Science, 2016, 129, 3695-3703.	2.0	77
34	Tracing the Archaeal Origins of Eukaryotic Membrane-Trafficking System Building Blocks. Molecular Biology and Evolution, 2016, 33, 1528-1541.	8.9	77
35	Analyses of RNA Polymerase II Genes from Free-Living Protists: Phylogeny, Long Branch Attraction, and the Eukaryotic Big Bang. Molecular Biology and Evolution, 2002, 19, 830-840.	8.9	76
36	Evolution of specificity in the eukaryotic endomembrane system. International Journal of Biochemistry and Cell Biology, 2009, 41, 330-340.	2.8	73

#	Article	IF	CITATIONS
37	Evolution and diversity of the Golgi body. FEBS Letters, 2009, 583, 3738-3745.	2.8	72
38	Oxymonads Are Closely Related to the Excavate Taxon Trimastix. Molecular Biology and Evolution, 2001, 18, 1034-1044.	8.9	67
39	Ultrastructural Description of Breviata anathema, N. Gen., N. Sp., the Organism Previously Studied as "Mastigamoeba invertens". Journal of Eukaryotic Microbiology, 2006, 53, 65-78.	1.7	64
40	Evolution of the Karyopherin-β Family of Nucleocytoplasmic Transport Factors; Ancient Origins and Continued Specialization. PLoS ONE, 2011, 6, e19308.	2.5	64
41	Novel syntaxin gene sequences from <i>Giardia, Trypanosoma</i> and algae: implications for the ancient evolution of the eukaryotic endomembrane system. Journal of Cell Science, 2002, 115, 1635-1642.	2.0	64
42	Comparative Genomic Analysis of Multi-Subunit Tethering Complexes Demonstrates an Ancient Pan-Eukaryotic Complement and Sculpting in Apicomplexa. PLoS ONE, 2013, 8, e76278.	2.5	61
43	Phylogenetic Artifacts Can be Caused by Leucine, Serine, and Arginine Codon Usage Heterogeneity: Dinoflagellate Plastid Origins as a Case Study. Systematic Biology, 2004, 53, 582-593.	5.6	60
44	Missing Pieces of an Ancient Puzzle: Evolution of the Eukaryotic Membrane-Trafficking System. Cold Spring Harbor Perspectives in Biology, 2014, 6, a016048-a016048.	5.5	60
45	Evolutionary relationship between dinoflagellates bearing obligate diatom endosymbionts: insight into tertiary endosymbiosis International Journal of Systematic and Evolutionary Microbiology, 2000, 50, 2075-2081.	1.7	58
46	Evolution of Tre-2/Bub2/Cdc16 (TBC) Rab GTPase-activating proteins. Molecular Biology of the Cell, 2013, 24, 1574-1583.	2.1	57
47	Novel syntaxin gene sequences from Giardia, Trypanosoma and algae: implications for the ancient evolution of the eukaryotic endomembrane system. Journal of Cell Science, 2002, 115, 1635-42.	2.0	57
48	Outerwear through the ages: evolutionary cell biology of vesicle coats. Current Opinion in Cell Biology, 2017, 47, 108-116.	5.4	56
49	Evidence for Golgi bodies in proposed 'Golgi-lacking' lineages. Proceedings of the Royal Society B: Biological Sciences, 2003, 270, S168-71.	2.6	55
50	ELMO Domains, Evolutionary and Functional Characterization of a Novel GTPase-activating Protein (GAP) Domain for Arf Protein Family GTPases. Journal of Biological Chemistry, 2012, 287, 39538-39553.	3.4	54
51	Evolution and Diversity of the Colgi. Cold Spring Harbor Perspectives in Biology, 2011, 3, a007849-a007849.	5.5	53
52	Implications of the new eukaryotic systematics for parasitologists. Parasitology International, 2008, 57, 97-104.	1.3	51
53	Arf3 Is Activated Uniquely at the trans-Golgi Network by Brefeldin A-inhibited Guanine Nucleotide Exchange Factors. Molecular Biology of the Cell, 2010, 21, 1836-1849.	2.1	49
54	The Oxymonad Genome Displays Canonical Eukaryotic Complexity in the Absence of a Mitochondrion. Molecular Biology and Evolution, 2019, 36, 2292-2312.	8.9	49

#	Article	IF	CITATIONS
55	Evolutionary origins and specialisation of membrane transport. Current Opinion in Cell Biology, 2018, 53, 70-76.	5.4	47
56	Molecular Phylogeny of Three Oxymonad Genera: Pyrsonympha, Dinenympha and Oxymonas. Journal of Eukaryotic Microbiology, 2003, 50, 190-197.	1.7	46
57	Molecular and phylogenetic characterization of syntaxin genes from parasitic protozoa. Molecular and Biochemical Parasitology, 2004, 136, 123-136.	1.1	42
58	Pex3 peroxisome biogenesis proteins function in peroxisome inheritance as class V myosin receptors. Journal of Cell Biology, 2009, 187, 233-246.	5.2	42
59	Repeated secondary loss of adaptin complex genes in the Apicomplexa. Parasitology International, 2009, 58, 86-94.	1.3	42
60	Phylogenetic Placement of Trichonympha. Journal of Eukaryotic Microbiology, 1998, 45, 445-447.	1.7	41
61	Longin and <scp>GAF</scp> Domains: Structural Evolution and Adaptation to the Subcellular Trafficking Machinery. Traffic, 2014, 15, 104-121.	2.7	40
62	Reconstructing the Mosaic Glycolytic Pathway of the Anaerobic Eukaryote Monocercomonoides. Eukaryotic Cell, 2006, 5, 2138-2146.	3.4	38
63	The Single ENTHâ€Đomain Protein of Trypanosomes; Endocytic Functions and Evolutionary Relationship with Epsin. Traffic, 2009, 10, 894-911.	2.7	38
64	Unexpected Ancient Paralogs and an Evolutionary Model for the COPII Coat Complex. Genome Biology and Evolution, 2015, 7, 1098-1109.	2.5	38
65	The Mitochondrial Genome and a 60â€kb Nuclear DNA Segment from <i>Naegleria fowleri</i> , the Causative Agent of Primary Amoebic Meningoencephalitis. Journal of Eukaryotic Microbiology, 2013, 60, 179-191.	1.7	36
66	Ancient Complexity, Opisthokont Plasticity, and Discovery of the 11th Subfamily of Arf <scp>GAP</scp> Proteins. Traffic, 2013, 14, 636-649.	2.7	36
67	Evolution and Natural History of Membrane Trafficking in Eukaryotes. Current Biology, 2020, 30, R553-R564.	3.9	36
68	The cloning of one putative octopamine receptor and two putative serotonin receptors from the tobacco hawkmoth, Manduca sexta. Insect Biochemistry and Molecular Biology, 2006, 36, 741-747.	2.7	35
69	Multivesicular bodies in the enigmatic amoeboflagellate <i>Breviata anathema</i> and the evolution of ESCRT 0. Journal of Cell Science, 2011, 124, 613-621.	2.0	35
70	A sophisticated, differentiated Golgi in the ancestor of eukaryotes. BMC Biology, 2018, 16, 27.	3.8	35
71	The Cell Biology of the Endocytic System from an Evolutionary Perspective. Cold Spring Harbor Perspectives in Biology, 2014, 6, a016998-a016998.	5.5	34
72	How Oxymonads Lost Their Groove: An Ultrastructural Comparison of Monocercomonoides and Excavate Taxa. Journal of Eukaryotic Microbiology, 2002, 49, 239-248.	1.7	32

#	Article	IF	CITATIONS
73	The evolution of MICOS: Ancestral and derived functions and interactions. Communicative and Integrative Biology, 2015, 8, e1094593.	1.4	32
74	Interaction with the effector dynamin-related protein 1 (Drp1) is an ancient function of Rab32 subfamily proteins. Cellular Logistics, 2014, 4, e986399.	0.9	27
75	An evolutionary balance: conservation vs innovation in ciliate membrane trafficking. Traffic, 2017, 18, 18-28.	2.7	27
76	Evolutionary mechanisms for establishing eukaryotic cellular complexity. Trends in Cell Biology, 2014, 24, 435-442.	7.9	26
77	Nextâ€Generation Sequencing Assessment of Eukaryotic Diversity in Oil Sands Tailings Ponds Sediments and SurfaceÂWater. Journal of Eukaryotic Microbiology, 2016, 63, 732-743.	1.7	26
78	Remodeling the Specificity of an Endosomal CORVET Tether Underlies Formation of Regulated Secretory Vesicles in the Ciliate Tetrahymena thermophila. Current Biology, 2018, 28, 697-710.e13.	3.9	25
79	Resolving the homology—function relationship through comparative genomics of membrane-trafficking machinery and parasite cell biology. Molecular and Biochemical Parasitology, 2016, 209, 88-103.	1.1	24
80	Comparative analysis of plant genomes allows the definition of the "Phytolongins": a novel non-SNARE longin domain protein family. BMC Genomics, 2009, 10, 510.	2.8	23
81	A role for adaptor protein complex 1 in protein targeting to rhoptry organelles in Plasmodium falciparum. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 699-710.	4.1	23
82	Evolution of the endomembrane systems of trypanosomatids: conservation and specialisation. Journal of Cell Science, 2017, 130, 1421-1434.	2.0	23
83	From all to (nearly) none. Cellular Logistics, 2014, 4, e28114.	0.9	22
84	Plastid Transcript Editing across Dinoflagellate Lineages Shows Lineage-Specific Application but Conserved Trends. Genome Biology and Evolution, 2018, 10, 1019-1038.	2.5	22
85	A panâ€apicomplexan phosphoinositideâ€binding protein acts in malarial microneme exocytosis. EMBO Reports, 2019, 20, .	4.5	22
86	Ancient complement and lineage-specific evolution of the Sec7 ARF GEF proteins in eukaryotes. Molecular Biology of the Cell, 2019, 30, 1846-1863.	2.1	21
87	Mechanism and evolution of the Zn-fingernail required for interaction of VARP with VPS29. Nature Communications, 2020, 11, 5031.	12.8	21
88	Hydrogenosomal succinyl-CoA synthetase from the rumen-dwelling fungus Neocallimastix patriciarum; an energy-producing enzyme of mitochondrial origin. Gene, 2006, 373, 75-82.	2.2	20
89	Cryptic organelle homology in apicomplexan parasites: insights from evolutionary cell biology. Current Opinion in Microbiology, 2013, 16, 424-431.	5.1	20
90	Genomics and transcriptomics yields a system-level view of the biology of the pathogen Naegleria fowleri. BMC Biology, 2021, 19, 142.	3.8	18

#	Article	IF	CITATIONS
91	A Eukaryote-Wide Perspective on the Diversity and Evolution of the ARF GTPase Protein Family. Genome Biology and Evolution, 2021, 13, .	2.5	18
92	A comparative analysis of trypanosomatid SNARE proteins. Parasitology International, 2014, 63, 341-348.	1.3	17
93	Evolutionary cell biology: functional insight from "endless forms most beautiful― Molecular Biology of the Cell, 2015, 26, 4532-4538.	2.1	17
94	Seeing the endomembrane system for the trees: Evolutionary analysis highlights the importance of plants as models for eukaryotic membrane-trafficking. Seminars in Cell and Developmental Biology, 2018, 80, 142-152.	5.0	17
95	A Characterization of the Manduca sexta Serotonin Receptors in the Context of Olfactory Neuromodulation. PLoS ONE, 2013, 8, e69422.	2.5	16
96	An ancestral role in peroxisome assembly is retained by the divisional peroxin Pex11 in the yeast <i>Yarrowia lipolytica</i> . Journal of Cell Science, 2015, 128, 1327-1340.	2.0	16
97	Exclusive expression of the Rab11 effector SH3TC2 in Schwann cells links integrin-α6 and myelin maintenance to Charcot-Marie-Tooth disease type 4C. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2016, 1862, 1279-1290.	3.8	16
98	Nuclear condensation in protozoan gametes and the evolution of anisogamy. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 1999, 124, 287-295.	1.8	15
99	Phylogenetic Estimation of Community Composition and Novel Eukaryotic Lineages in Base Mine Lake: An Oil Sands Tailings Reclamation Site in Northern Alberta. Journal of Eukaryotic Microbiology, 2020, 67, 86-99.	1.7	14
100	The <i>Mastigamoeba balamuthi</i> Genome and the Nature of the Free-Living Ancestor of <i>Entamoeba</i> . Molecular Biology and Evolution, 2021, 38, 2240-2259.	8.9	14
101	Progressive and Biased Divergent Evolution Underpins the Origin and Diversification of Peridinin Dinoflagellate Plastids. Molecular Biology and Evolution, 2016, 34, msw235.	8.9	13
102	Phylogenetic and Primary Sequence Characterization of Cathepsin B Cysteine Proteases from the Oxymonad Flagellate <i>Monocercomonoides</i> . Journal of Eukaryotic Microbiology, 2008, 55, 9-17.	1.7	12
103	Complex Patterns of Gene Fission in the Eukaryotic Folate Biosynthesis Pathway. Genome Biology and Evolution, 2014, 6, 2709-2720.	2.5	12
104	Membrane Trafficking Modulation during Entamoeba Encystation. Scientific Reports, 2017, 7, 12854.	3.3	12
105	Regulation of early endosomes across eukaryotes: Evolution and functional homology of Vps9 proteins. Traffic, 2018, 19, 546-563.	2.7	12
106	Emergent Complexity in Myosin V-Based Organelle Inheritance. Molecular Biology and Evolution, 2012, 29, 975-984.	8.9	11
107	An <scp>ER</scp> â€directed transcriptional response to unfolded protein stress in the absence of conserved sensorâ€transducer proteins in <i><scp>G</scp>iardia lamblia</i> . Molecular Microbiology, 2013, 88, 754-771.	2.5	11
108	Losses, Expansions, and Novel Subunit Discovery of Adaptor Protein Complexes in Haptophyte Algae. Protist, 2015, 166, 585-597.	1.5	11

#	Article	IF	CITATIONS
109	Recent gene duplications dominate evolutionary dynamics of adaptor protein complex subunits in embryophytes. Traffic, 2019, 20, 961-973.	2.7	10
110	A Phosphoinositide-Binding Protein Acts in the Trafficking Pathway of Hemoglobin in the Malaria Parasite Plasmodium falciparum. MBio, 2022, 13, e0323921.	4.1	10
111	A Novel Rho-Like Protein TbRHP Is Involved in Spindle Formation and Mitosis in Trypanosomes. PLoS ONE, 2011, 6, e26890.	2.5	9
112	Unexpected organellar locations of ESCRT machinery in Giardia intestinalis and complex evolutionary dynamics spanning the transition to parasitism in the lineage Fornicata. BMC Biology, 2021, 19, 167.	3.8	8
113	Atypical Phenotypes From Flatworm Kv3 Channels. Journal of Neurophysiology, 2006, 95, 3035-3046.	1.8	7
114	Phylogenetic Analysis of Glycerol 3-Phosphate Acyltransferases in Opisthokonts Reveals Unexpected Ancestral Complexity and Novel Modern Biosynthetic Components. PLoS ONE, 2014, 9, e110684.	2.5	7
115	Evolutionary cell biology traces the rise of the exomer complex in Fungi from an ancient eukaryotic component. Scientific Reports, 2018, 8, 11154.	3.3	7
116	Identification and characterisation of the cryptic Golgi apparatus in <i>Naegleria gruberi</i> . Journal of Cell Science, 2018, 131, .	2.0	6
117	Evolution: Parallel Paths to Parasitism in the Apicomplexa. Current Biology, 2019, 29, R836-R839.	3.9	6
118	Proteomic Analysis of Trichomonas vaginalis Phagolysosome, Lysosomal Targeting, and Unconventional Secretion of Cysteine Peptidases. Molecular and Cellular Proteomics, 2022, 21, 100174.	3.8	6
119	Distribution of membrane trafficking system components across ciliate diversity highlights heterogenous o <scp>rganelleâ€associated</scp> machinery. Traffic, 2022, , .	2.7	6
120	The reduced ARF regulatory system in Giardia intestinalis pre-dates the transition to parasitism in the lineage Fornicata. International Journal for Parasitology, 2021, 51, 825-839.	3.1	5
121	Phylogeny and Evolution. , 2016, , 383-408.		4
122	Microbial Eukaryotes in Oil Sands Environments: Heterotrophs in the Spotlight. Microorganisms, 2019, 7, 178.	3.6	4
123	Phylogenetic and biochemical analysis of calsequestrin structure and association of its variants with cardiac disorders. Scientific Reports, 2020, 10, 18115.	3.3	4
124	Molecular evolutionary analysis of the <scp>SM</scp> and <scp>SNARE</scp> vesicle fusion machinery in ciliates shows concurrent expansions in late secretory machinery. Journal of Eukaryotic Microbiology, 2022, 69, e12919.	1.7	4
125	Genetic analysis of ID1-DBL2X predicts its validity as a vaccine candidate in Colombia and supports at least two independently introduced Plasmodium falciparum populations in the region. Infection, Genetics and Evolution, 2017, 55, 175-185.	2.3	3
126	Massive differential expansion of the Trichomonas vaginalis adaptin genomic complement. Journal of Eukaryotic Microbiology, 2005, 52, 7S-27S.	1.7	1

#	Article	IF	CITATIONS
127	The Ancient and Widespread Nature of the ER-Mitochondria Encounter Structure. Molecular Biology and Evolution, 2014, 31, 251-251.	8.9	1
128	Comparative genomic analysis illustrates evolutionary dynamics of multisubunit tethering complexes across green algal diversity. Journal of Eukaryotic Microbiology, 2023, 70, .	1.7	1
129	Cell biology of micro-organisms and the evolution of the eukaryotic cell. Molecular Biology of the Cell, 2012, 23, 974-974.	2.1	0
130	Evolving eukaryotes: an interview with Joel Dacks. BMC Biology, 2018, 16, 119.	3.8	0
131	Evolution of the eukaryotic endomembrane system ―first and last ancestors. FASEB Journal, 2009, 23, 319.2.	0.5	0