
Gregory Sloan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9345561/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Infrared Absolute Calibration. I. Comparison of Sirius with Fainter Calibration Stars. Astronomical Journal, 2022, 163, 45.	4.7	6
2	Searching for TESS Photometric Variability of Possible JWST Spectrophotometric Standard Stars. Astronomical Journal, 2022, 163, 136.	4.7	8
3	The Nearby Evolved Stars Survey II: Constructing a volume-limited sample and first results from the James Clerk Maxwell Telescope. Monthly Notices of the Royal Astronomical Society, 2022, 512, 1091-1110.	4.4	5
4	The James Webb Space Telescope Absolute Flux Calibration. I. Program Design and Calibrator Stars. Astronomical Journal, 2022, 163, 267.	4.7	32
5	Trends in Silicates in the \hat{I}^2 Pictoris Disk. Astrophysical Journal, 2022, 933, 54.	4.5	3
6	Optical and Near-infrared Pulsation Properties of RR Lyrae and Population II Cepheid Variables in the Messier 15 Globular Cluster. Astrophysical Journal, 2021, 922, 20.	4.5	10
7	Asymptotic Giant Branch Stars in the Nearby Dwarf Galaxy Leo P*. Astrophysical Journal, 2019, 884, 152.	4.5	4
8	An Infrared Census of DUST in Nearby Galaxies with Spitzer (DUSTiNGS). V. The Period–Luminosity Relation for Dusty Metal-poor AGB Stars. Astrophysical Journal, 2019, 877, 49.	4.5	23
9	Circumstellar CO in metal-poor stellar winds: the highly irradiated globular cluster star 47 Tucanae V3. Monthly Notices of the Royal Astronomical Society: Letters, 2019, 484, L85-L89.	3.3	7
10	Stellar Pulsation and the Production of Dust and Molecules in Galactic Carbon Stars. Astrophysical Journal, 2019, 887, 82.	4.5	5
11	The End: Witnessing the Death of Extreme Carbon Stars. Proceedings of the International Astronomical Union, 2018, 14, 305-308.	0.0	0
12	Luminosities and mass-loss rates of Local Group AGB stars and red supergiants. Astronomy and Astrophysics, 2018, 609, A114.	5.1	52
13	The SAGE-Spec Spitzer Legacy program: the life-cycle of dust and gas in the Large Magellanic Cloud. Point source classification – III. Monthly Notices of the Royal Astronomical Society, 2017, 470, 3250-3282.	4.4	47
14	An Infrared Census of DUST in Nearby Galaxies with Spitzer (DUSTiNGS). IV. Discovery of High-redshift AGB Analogs [*] . Astrophysical Journal, 2017, 851, 152.	4.5	29
15	DUSTINGS. III. DISTRIBUTION OF INTERMEDIATE-AGE AND OLD STELLAR POPULATIONS IN DISKS AND OUTER EXTREMITIES OF DWARF GALAXIES. Astrophysical Journal, 2017, 834, 78.	4.5	31
16	THE INFRARED SPECTRAL PROPERTIES OF MAGELLANIC CARBON STARS. Astrophysical Journal, 2016, 826, 44.	4.5	36
17	Dust in planetary nebulae. Proceedings of the International Astronomical Union, 2016, 12, 121-127.	0.0	1
18	Dust & Abundances of Metal-Poor Planetary Nebulae in the Galactic Anti-Center. Proceedings of the International Astronomical Union, 2016, 12, 341-342.	0.0	0

GREGORY SLOAN

#	Article	IF	CITATIONS
19	EU Del: exploring the onset of pulsation-driven winds in giant stars. Monthly Notices of the Royal Astronomical Society, 2016, 456, 4542-4550.	4.4	10
20	<i>Spitzer</i> infrared spectrograph point source classification in the Small Magellanic Cloud. Monthly Notices of the Royal Astronomical Society, 2015, 451, 3504-3536.	4.4	41
21	AN INFRARED CENSUS OF DUST IN NEARBY GALAXIES WITH <i>SPITZER </i> (DUSTINGS). II. DISCOVERY OF METAL-POOR DUSTY AGB STARS. Astrophysical Journal, 2015, 800, 51.	4.5	55
22	SPECTRAL CALIBRATION IN THE MID-INFRARED: CHALLENGES AND SOLUTIONS. Astronomical Journal, 2015, 149, 11.	4.7	20
23	AN INFRARED CENSUS OF DUST IN NEARBY GALAXIES WITH <i>SPITZER</i> (DUSTINGS). I. OVERVIEW. Astrophysical Journal, Supplement Series, 2015, 216, 10.	7.7	49
24	Witnessing the emergence of a carbon star. Monthly Notices of the Royal Astronomical Society: Letters, 2015, 451, L1-L5.	3.3	16
25	Spitzer Space Telescope spectra of post-AGB stars in the Large Magellanic Cloud – polycyclic aromatic hydrocarbons at low metallicities. Monthly Notices of the Royal Astronomical Society, 2014, 439, 1472-1493.	4.4	59
26	CARBON-RICH DUST PAST THE ASYMPTOTIC GIANT BRANCH: ALIPHATICS, AROMATICS, AND FULLERENES IN THE MAGELLANIC CLOUDS. Astrophysical Journal, 2014, 791, 28.	4.5	75
27	VISTA variables in the Sagittarius dwarf spheroidal galaxy: pulsation-versus dust-driven winds on the giant branches. Monthly Notices of the Royal Astronomical Society, 2014, 439, 2618-2637.	4.4	16
28	Modelling the alumina abundance of oxygen-rich evolved stars in the Large Magellanic Cloud. Monthly Notices of the Royal Astronomical Society, 2014, 440, 631-651.	4.4	30
29	CARBON-RICH DUST PRODUCTION IN METAL-POOR GALAXIES IN THE LOCAL GROUP. Astrophysical Journal, 2012, 752, 140.	4.5	39
30	DISCOVERY AND ANALYSIS OF 21 μm FEATURE SOURCES IN THE MAGELLANIC CLOUDS. Astrophysical Journal, 2011, 735, 127.	4.5	48
31	Spitzer spectra of evolved stars in ω Centauri and their low-metallicity dust production. Monthly Notices of the Royal Astronomical Society, 2011, 417, 20-31.	4.4	36
32	<i>SPITZER</i> SPECTROSCOPY OF MASS-LOSS AND DUST PRODUCTION BY EVOLVED STARS IN GLOBULAR CLUSTERS. Astrophysical Journal, 2010, 719, 1274-1292.	4.5	48
33	The low wind expansion velocity of metal-poor carbon stars in the Halo and the Sagittarius stream. Monthly Notices of the Royal Astronomical Society, 2010, 403, 1331-1338.	4.4	25
34	A <i>SPITZER SPACE TELESCOPE</i> FAR-INFRARED SPECTRAL ATLAS OF COMPACT SOURCES IN THE MAGELLANIC CLOUDS. II. THE SMALL MAGELLANIC CLOUD. Astronomical Journal, 2010, 139, 1553-1565.	4.7	52
35	The SAGE-Spec Spitzer Legacy Program: The Life Cycle of Dust and Gas in the Large Magellanic Cloud. Publications of the Astronomical Society of the Pacific, 2010, 122, 683-700.	3.1	78
36	UNUSUAL DUST EMISSION FROM PLANETARY NEBULAE IN THE MAGELLANIC CLOUDS. Astrophysical Journal, 2009, 699, 1541-1552.	4.5	73

GREGORY SLOAN

#	Article	IF	CITATIONS
37	Luminosities and mass-loss rates of SMC and LMC AGB stars and red supergiants. Astronomy and Astrophysics, 2009, 506, 1277-1296.	5.1	138
38	Dust Formation in a Galaxy with Primitive Abundances. Science, 2009, 323, 353-355.	12.6	61
39	The global gas and dust budget of the Large Magellanic Cloud: AGB stars and supernovae, and the impact on the ISM evolution. Monthly Notices of the Royal Astronomical Society, 2009, 396, 918-934.	4.4	176
40	The Magellanic Zoo: Midâ€Infrared <i>Spitzer</i> Spectroscopy of Evolved Stars and Circumstellar Dust in the Magellanic Clouds. Astrophysical Journal, 2008, 686, 1056-1081.	4.5	87
41	AGB stars as an origin of dust and gas in the interstellar medium of galaxies. AIP Conference Proceedings, 2008, , .	0.4	0
42	The production of dust in the Magellanic Clouds. Proceedings of the International Astronomical Union, 2008, 4, 405-410.	0.0	0
43	Carbon-rich AGB stars in our Galaxy and nearby galaxies as possible sources of PAHs. Proceedings of the International Astronomical Union, 2008, 4, 197-200.	0.0	0
44	Discovery of Extreme Carbon Stars in the Large Magellanic Cloud. Astrophysical Journal, 2008, 688, L9-L12.	4.5	51
45	Chemical Abundances and Dust in Planetary Nebulae in the Galactic Bulge. Astrophysical Journal, 2008, 680, 1206-1221.	4.5	39
46	Effects of Metallicity on the Chemical Composition of Carbon Stars. Astrophysical Journal, 2008, 681, 1557-1573.	4.5	43
47	Molecules and dust production in the Magellanic Clouds. Astronomy and Astrophysics, 2008, 487, 1055-1073.	5.1	85
48	Molecules and Dust Grains in AGB Stars in Nearby Galaxies $\hat{a} \in$ "the Influence of Metallicities. , 2007, , .		0
49	The Unusual Hydrocarbon Emission from the Early Carbon Star HD 100764: The Connection between Aromatics and Aliphatics. Astrophysical Journal, 2007, 664, 1144-1153.	4.5	140
50	Spitzer spectroscopy of carbon stars in the Small Magellanic Cloud. Monthly Notices of the Royal Astronomical Society, 2007, 376, 1270-1284.	4.4	67
51	Luminosities and mass-loss rates of carbon stars in the Magellanic Clouds. Monthly Notices of the Royal Astronomical Society, 2007, 376, 313-337.	4.4	94
52	Spitzer Space Telescope spectral observations of AGB stars in the Fornax dwarf spheroidal galaxy. Monthly Notices of the Royal Astronomical Society, 2007, 382, 1889-1900.	4.4	41
53	Midâ€Infrared Spectroscopy of Carbon Stars in the Small Magellanic Cloud. Astrophysical Journal, 2006, 645, 1118-1130.	4.5	68
54	A Spitzer mid-infrared spectral survey of mass-losing carbon stars in the Large Magellanic Cloud. Monthly Notices of the Royal Astronomical Society, 2006, 370, 1961-1978.	4.4	94

GREGORY SLOAN

#	Article	IF	CITATIONS
55	Spitzer observations of acetylene bands in carbon-rich asymptotic giant branch stars in the Large Magellanic Cloud. Monthly Notices of the Royal Astronomical Society, 2006, 371, 415-420.	4.4	60
56	The Infrared Spectrograph (IRS) on the Spitzer Space Telescope. Astrophysical Journal, Supplement Series, 2004, 154, 18-24.	7.7	1,303
57	A Uniform Database of 2.4–45.4 Micron Spectra from the Infrared Space Observatory Short Wavelength Spectrometer. Astrophysical Journal, Supplement Series, 2003, 147, 379-401.	7.7	213
58	Guilt by Association: The 13 Micron Dust Emission Feature and Its Correlation to Other Gas and Dust Features. Astrophysical Journal, 2003, 594, 483-495.	4.5	77
59	Artifacts at 4.5 and 8.0 Microns in Short-Wavelength Spectra from the [ITAL]Infrared Space Observatory[/ITAL]. Astrophysical Journal, 2002, 565, L55-L58.	4.5	10
60	Classification of 2.4–45.2 Micron Spectra from the Infrared Space Observatory Short Wavelength Spectrometer. Astrophysical Journal, Supplement Series, 2002, 140, 389-406.	7.7	81
61	The Carbon-rich Dust Sequence: Infrared Spectral Classification of Carbon Stars. Astronomical Journal, 1998, 115, 809-820.	4.7	33
62	Sources of the 13 Micron Feature Associated with Oxygen-rich Circumstellar Dust. Astrophysical Journal, 1996, 463, 310.	4.5	67