Wei Yao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9344743/publications.pdf

Version: 2024-02-01

		687363	794594
19	2,086	13	19
papers	citations	h-index	g-index
19	19	19	3741
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Self-energy dynamics and the mode-specific phonon threshold effect in Kekul \tilde{A} ©-ordered graphene. National Science Review, 2022, 9, .	9.5	15
2	Experimental Evidence of Chiral Symmetry Breaking in Kekulé-Ordered Graphene. Physical Review Letters, 2021, 126, 206804.	7.8	72
3	Experimental evidence of plasmarons and effective fine structure constant in electron-doped graphene/h-BN heterostructure. Npj Quantum Materials, 2021, 6, .	5.2	3
4	Spatially-resolved electronic structure of stripe domains in IrTe2 through electronic structure microscopy. Communications Physics, 2021, 4, .	5. 3	4
5	Progress on band structure engineering of twisted bilayer and two-dimensional moiré heterostructures*. Chinese Physics B, 2020, 29, 127304.	1.4	8
6	Disorder-induced multifractal superconductivity in monolayer niobium dichalcogenides. Nature Physics, 2019, 15, 904-910.	16.7	86
7	Electronic structure of molecular beam epitaxy grown $1T\hat{a}\in^2$ -MoTe ₂ film and strain effect*. Chinese Physics B, 2019, 28, 107307.	1.4	7
8	Evidence for a Quasi-One-Dimensional Charge Density Wave in CuTe by Angle-Resolved Photoemission Spectroscopy. Physical Review Letters, 2018, 121, 206402.	7.8	33
9	Quasicrystalline 30° twisted bilayer graphene as an incommensurate superlattice with strong interlayer coupling. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 6928-6933.	7.1	169
10	Widely tunable band gap in a multivalley semiconductor SnSe by potassium doping. Physical Review Materials, 2018, 2, .	2.4	17
11	Stacking-Dependent Electronic Structure of Trilayer Graphene Resolved by Nanospot Angle-Resolved Photoemission Spectroscopy. Nano Letters, 2017, 17, 1564-1568.	9.1	63
12	Direct observation of spin-layer locking by local Rashba effect in monolayer semiconducting PtSe2 film. Nature Communications, 2017, 8, 14216.	12.8	151
13	High quality atomically thin PtSe ₂ films grown by molecular beam epitaxy. 2D Materials, 2017, 4, 045015.	4.4	142
14	Lorentz-violating type-II Dirac fermions in transition metal dichalcogenide PtTe2. Nature Communications, 2017, 8, 257.	12.8	337
15	Gaps induced by inversion symmetry breaking andÂsecond-generation Dirac cones in graphene/hexagonal boron nitride. Nature Physics, 2016, 12, 1111-1115.	16.7	179
16	Monolayer charge-neutral graphene on platinum with extremely weak electron-phonon coupling. Physical Review B, 2015, 92, .	3.2	12
17	Monolayer PtSe ₂ , a New Semiconducting Transition-Metal-Dichalcogenide, Epitaxially Grown by Direct Selenization of Pt. Nano Letters, 2015, 15, 4013-4018.	9.1	560
18	Topological Surface State Enhanced Photothermoelectric Effect in Bi ₂ Se ₃ Nanoribbons. Nano Letters, 2014, 14, 4389-4394.	9.1	79

#	Article	lF	CITATIONS
19	Fully gapped topological surface states in Bi2Se3 films induced by a d-wave high-temperature superconductor. Nature Physics, 2013, 9, 621-625.	16.7	149