Carsten Watzl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/93432/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Activating Natural Killer Cell Receptors, Selectins, and Inhibitory Siglecs Recognize Ebolavirus Glycoprotein. Journal of Innate Immunity, 2022, 14, 135-147.	3.8	1
2	Effect of <scp>JAK</scp> Inhibition on the Induction of Proinflammatory <scp>HLA</scp> – <scp>DR</scp> + <scp>CD90</scp> + Rheumatoid Arthritis Synovial Fibroblasts by Interferonâ€Î³. Arthritis and Rheumatology, 2022, 74, 441-452.	5.6	20
3	Impact of Biological and Lifestyle Factors on Cognitive Aging and Work Ability in the Dortmund Vital Study: Protocol of an Interdisciplinary, Cross-sectional, and Longitudinal Study. JMIR Research Protocols, 2022, 11, e32352.	1.0	18
4	Human ILC3 Exert TRAIL-Mediated Cytotoxicity Towards Cancer Cells. Frontiers in Immunology, 2022, 13, 742571.	4.8	11
5	Neutralizing antibody responses 300 days after SARSâ€CoVâ€⊋ infection and induction of high antibody titers after vaccination. European Journal of Immunology, 2022, 52, 810-815.	2.9	9
6	COVIDâ€19 vaccines – common misperceptions, false claims and myths explained. European Journal of Immunology, 2022, 52, 692-694.	2.9	1
7	Human NK cells responses are enhanced by CD56 engagement. European Journal of Immunology, 2022, 52, 1441-1451.	2.9	10
8	Results of the Optimune trial: A randomized controlled trial evaluating a novel Internet intervention for breast cancer survivors. PLoS ONE, 2021, 16, e0251276.	2.5	25
9	To stress or not to stress: Brain-behavior-immune interaction may weaken or promote the immune response to SARS-CoV-2. Neurobiology of Stress, 2021, 14, 100296.	4.0	32
10	Contribution to the ongoing discussion on fluoride toxicity. Archives of Toxicology, 2021, 95, 2571-2587.	4.2	12
11	Spatio-Temporal Multiscale Analysis of Western Diet-Fed Mice Reveals a Translationally Relevant Sequence of Events during NAFLD Progression. Cells, 2021, 10, 2516.	4.1	24
12	SARSâ€CoVâ€⊋ infection shortly after BNT162b2 vaccination results in high antiâ€spike antibody levels in nursing home residents and staff. Immunity, Inflammation and Disease, 2021, 9, 1702-1706.	2.7	15
13	Low self-reported stress despite immune-physiological changes in paramedics during rescue operations. EXCLI Journal, 2021, 20, 792-811.	0.7	1
14	NK cell detachment from target cells is regulated by successful cytotoxicity and influences cytokine production. Cellular and Molecular Immunology, 2020, 17, 347-355.	10.5	29
15	Robust T Cell Response Toward Spike, Membrane, and Nucleocapsid SARS-CoV-2 Proteins Is Not Associated with Recovery in Critical COVID-19 Patients. Cell Reports Medicine, 2020, 1, 100092.	6.5	148
16	COVID-19-Induced ARDS Is Associated with Decreased Frequency of Activated Memory/Effector T Cells Expressing CD11a++. Molecular Therapy, 2020, 28, 2691-2702.	8.2	35
17	Coated Latex Beads as Artificial Cells for Quantitative Investigations of Receptor/Ligand Interactions. Current Protocols in Immunology, 2020, 131, e111.	3.6	1
18	Toxicity of fluoride: critical evaluation of evidence for human developmental neurotoxicity in epidemiological studies, animal experiments and in vitro analyses. Archives of Toxicology, 2020, 94, 1375-1415.	4.2	109

#	Article	IF	CITATIONS
19	Regulation of natural killer cell activity by glucocorticoids, serotonin, dopamine, and epinephrine. Cellular and Molecular Immunology, 2020, 17, 705-711.	10.5	56
20	Quantitative analysis of human NK cell reactivity using latex beads coated with defined amounts of antibodies. European Journal of Immunology, 2020, 50, 656-665.	2.9	5
21	Enhanced activation of human NK cells by drug-exposed hepatocytes. Archives of Toxicology, 2020, 94, 439-448.	4.2	9
22	Protocol for the Optimune trial: a randomized controlled trial evaluating a novel Internet intervention for breast cancer survivors. Trials, 2020, 21, 117.	1.6	8
23	Analysis of Natural Killer cell functions in patients with hereditary hemochromatosis. EXCLI Journal, 2020, 19, 430-441.	0.7	1
24	NK cells switch from granzyme B to death receptor–mediated cytotoxicity during serial killing. Journal of Experimental Medicine, 2019, 216, 2113-2127.	8.5	210
25	Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition). European Journal of Immunology, 2019, 49, 1457-1973.	2.9	766
26	LIPGâ€promoted lipid storage mediates adaptation to oxidative stress in breast cancer. International Journal of Cancer, 2019, 145, 901-915.	5.1	41
27	Mechanisms of natural killer cell-mediated cellular cytotoxicity. Journal of Leukocyte Biology, 2019, 105, 1319-1329.	3.3	311
28	Circulating growth/differentiation factor 15 is associated with human CD56bright natural killer cell dysfunction and nosocomial infection in severe systemic inflammation. EBioMedicine, 2019, 43, 380-391.	6.1	27
29	Activation of natural killer cells by rituximab in granulomatosis with polyangiitis. Arthritis Research and Therapy, 2019, 21, 277.	3.5	7
30	SLAM family receptors in natural killer cells – Mediators of adhesion, activation and inhibition via cis and trans interactions. Clinical Immunology, 2019, 204, 37-42.	3.2	17
31	Adaptive responses of innate lymphocytes. Nature Immunology, 2018, 19, 426-427.	14.5	3
32	Impedance-based analysis of Natural Killer cell stimulation. Scientific Reports, 2018, 8, 4938.	3.3	19
33	KIR downregulation by ILâ€12/15/18 unleashes human NK cells from KIR/HLAâ€i inhibition and enhances killing of tumor cells. European Journal of Immunology, 2018, 48, 355-365.	2.9	54
34	Single-Fluorescent Protein Reporters Allow Parallel Quantification of Natural Killer Cell-Mediated Granzyme and Caspase Activities in Single Target Cells. Frontiers in Immunology, 2018, 9, 1840.	4.8	15
35	Attention to Emotional Information Is Associated With Cytokine Responses to Psychological Stress. Frontiers in Neuroscience, 2018, 12, 687.	2.8	26
36	LFA-1 Activation in NK Cells and Their Subsets: Influence of Receptors, Maturation, and Cytokine Stimulation. Journal of Immunology, 2017, 198, 1944-1951.	0.8	71

#	Article	lF	CITATIONS
37	Design, Synthesis, and Biological Evaluation of Small, High-Affinity Siglec-7 Ligands: Toward Novel Inhibitors of Cancer Immune Evasion. Journal of Medicinal Chemistry, 2017, 60, 941-956.	6.4	26
38	Altered expression of miR-181a and miR-146a does not change the expression of surface NCRs in human NK cells. Scientific Reports, 2017, 7, 41381.	3.3	7
39	Rituximab and Fcγ Receptors in Granulomatosis With Polyangiitis (Wegener's): Comment on the Article by Cartin eba et al. Arthritis and Rheumatology, 2017, 69, 1506-1507.	5.6	Ο
40	Executive control, ERP and pro-inflammatory activity in emotionally exhausted middle-aged employees. Comparison between subclinical burnout and mild to moderate depression. Psychoneuroendocrinology, 2017, 86, 176-186.	2.7	18
41	Guidelines for the use of flow cytometry and cell sorting in immunological studies [*] . European Journal of Immunology, 2017, 47, 1584-1797.	2.9	505
42	Termination of the Activating NK Cell Immunological Synapse Is an Active and Regulated Process. Journal of Immunology, 2017, 199, 2528-2535.	0.8	34
43	Glycerol-3-phosphate Acyltransferase 1 Promotes Tumor Cell Migration and Poor Survival in Ovarian Carcinoma. Cancer Research, 2017, 77, 4589-4601.	0.9	58
44	Differential Requirements for Src-Family Kinases in SYK or ZAP70-Mediated SLP-76 Phosphorylation in Lymphocytes. Frontiers in Immunology, 2017, 8, 789.	4.8	20
45	Impact of chronic and acute academic stress on lymphocyte subsets and monocyte function. PLoS ONE, 2017, 12, e0188108.	2.5	37
46	Natural Killer Cells and Liver Fibrosis. Frontiers in Immunology, 2016, 7, 19.	4.8	112
47	Active but not inactive granulomatosis with polyangiitis is associated with decreased and phenotypically and functionally altered CD56dim natural killer cells. Arthritis Research and Therapy, 2016, 18, 204.	3.5	8
48	Designed DNA Surfaces for in Vitro Modulation of Natural Killer Cells. ChemBioChem, 2016, 17, 486-492.	2.6	10
49	Rituximab induces phenotypical and functional changes of NK cells in a non-malignant experimental setting. Arthritis Research and Therapy, 2016, 18, 206.	3.5	20
50	Co-Activation of Cultured Human Natural Killer Cells: Enhanced Function and Decreased Inhibition. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2016, 79, 1078-1084.	2.3	7
51	Measuring the immune system: a comprehensive approach for the analysis of immune functions in humans. Archives of Toxicology, 2016, 90, 2481-2495.	4.2	21
52	Modulation of natural killer cell functions by interactions between 2B4 and CD48 in <i>cis</i> and in <i>trans</i> . Open Biology, 2016, 6, 160010.	3.6	15
53	Peripheral blood natural killer cell percentages in granulomatosis with polyangiitis correlate with disease inactivity and stage. Arthritis Research and Therapy, 2015, 17, 337.	3.5	14
54	Inhibition of NKp30―and 2B4â€mediated NK cell activation by evolutionary different human and bovine CEACAM1 receptors. European Journal of Immunology, 2015, 45, 2134-2142.	2.9	1

#	Article	IF	CITATIONS
55	Recruitment of activating NKâ€cell receptors 2B4 and NKG2D to membrane microdomains in mammalian cells is dependent on their transmembrane regions. European Journal of Immunology, 2015, 45, 1258-1269.	2.9	5
56	Synthesis and biological evaluation of 9- N -oxamyl sialosides as Siglec-7 ligands. Bioorganic and Medicinal Chemistry, 2015, 23, 5915-5921.	3.0	11
57	What <scp>SAP</scp> — 2 <scp>B</scp> 4 sends mixed messages in the absence of <scp>SAP</scp> . European Journal of Immunology, 2014, 44, 1281-1284.	2.9	5
58	How to Trigger a Killer. Advances in Immunology, 2014, 124, 137-170.	2.2	73
59	Natural killer cell regulation - beyond the receptors. F1000prime Reports, 2014, 6, 87.	5.9	34
60	A unique secreted adenovirus E3 protein binds to the leukocyte common antigen CD45 and modulates leukocyte functions. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E4884-93.	7.1	45
61	Surface CD107a/LAMP-1 protects natural killer cells from degranulation-associated damage. Blood, 2013, 122, 1411-1418.	1.4	111
62	NAB2 and EGR-1 exert opposite roles in regulating TRAIL expression in human Natural Killer cells. Immunology Letters, 2013, 151, 61-67.	2.5	12
63	Activating natural cytotoxicity receptors of natural killer cells in cancer and infection. Trends in Immunology, 2013, 34, 182-191.	6.8	262
64	NK cell cytotoxicity mediated by 2B4 and NTB-A is dependent on SAP acting downstream of receptor phosphorylation. Frontiers in Immunology, 2013, 4, 3.	4.8	22
65	NK cells – Versatile tools for viral defense and cancer treatment. European Journal of Immunology, 2013, 43, 860-863.	2.9	1
66	Understanding natural killer cell regulation by mathematical approaches. Frontiers in Immunology, 2012, 3, 359.	4.8	14
67	Multiple Receptors Trigger Human NK Cell-Mediated Cytotoxicity against Porcine Chondrocytes. Journal of Immunology, 2012, 188, 2075-2083.	0.8	17
68	The Stalk Domain and the Glycosylation Status of the Activating Natural Killer Cell Receptor NKp30 Are Important for Ligand Binding. Journal of Biological Chemistry, 2012, 287, 31527-31539.	3.4	33
69	Molecular mechanisms of natural killer cell regulation. Frontiers in Bioscience - Landmark, 2012, 17, 1418.	3.0	16
70	Enhancement of natural killer cell effector functions against selected lymphoma and leukemia cell lines by dasatinib. International Journal of Cancer, 2012, 131, E916-27.	5.1	37
71	Integration of Activating and Inhibitory Receptor Signaling by Regulated Phosphorylation of Vav1 in Immune Cells. Science Signaling, 2011, 4, ra36.	3.6	56
72	2B4 Engagement Mediates Rapid LFA-1 and Actin-Dependent NK Cell Adhesion to Tumor Cells as Measured by Single Cell Force Spectroscopy. Journal of Immunology, 2011, 186, 2757-2764.	0.8	52

#	Article	IF	CITATIONS
73	Glycosylation Affects Ligand Binding and Function of the Activating Natural Killer Cell Receptor 2B4 (CD244) Protein. Journal of Biological Chemistry, 2011, 286, 24142-24149.	3.4	31
74	WF10 Stimulates NK Cell Cytotoxicity by Increasing LFA-1-Mediated Adhesion to Tumor Cells. Journal of Biomedicine and Biotechnology, 2011, 2011, 1-6.	3.0	6
75	Modulation of NKp30- and NKp46-Mediated Natural Killer Cell Responses by Poxviral Hemagglutinin. PLoS Pathogens, 2011, 7, e1002195.	4.7	94
76	The activating receptors 2B4 and NTB-A, but not CRACC are subject to ligand-induced down-regulation on human natural killer cells. Nature Precedings, 2010, , .	0.1	0
77	Signal Transduction During Activation and Inhibition of Natural Killer Cells. Current Protocols in Immunology, 2010, 90, Unit 11.9B.	3.6	118
78	Evaluation of Human Natural Killer Cell Activities in Whole Blood. Current Protocols in Immunology, 2010, 91, Unit7.39.	3.6	9
79	Regulation of NK Cell Function by Human Granulocyte Arginase. Journal of Immunology, 2009, 182, 5259-5267.	0.8	106
80	Comprehensive analysis of NK cell function in whole blood samples. Journal of Immunological Methods, 2009, 341, 154-164.	1.4	47
81	Exposure of NK cells to intravenous immunoglobulin induces IFNÎ ³ release and degranulation but inhibits their cytotoxic activity. Clinical Immunology, 2009, 133, 393-401.	3.2	44
82	Statins inhibit NKâ€cell cytotoxicity by interfering with LFAâ€1â€mediated conjugate formation. European Journal of Immunology, 2009, 39, 1456-1465.	2.9	37
83	Comparison of phenotype of $^{\hat{l}\hat{s}\hat{l}'}$ T cells generated using various cultivation methods. Immunology Letters, 2009, 125, 53-58.	2.5	5
84	Activation of Natural Killer Cells by Newcastle Disease Virus Hemagglutinin-Neuraminidase. Journal of Virology, 2009, 83, 8108-8121.	3.4	149
85	2â€Ð DIGE analyses of enriched secretory lysosomes reveal heterogeneous profiles of functionally relevant proteins in leukemic and activated human NK cells. Proteomics, 2008, 8, 2911-2925.	2.2	30
86	Activating NK cell receptor ligands are differentially expressed during progression to cervical cancer. International Journal of Cancer, 2008, 123, 2343-2353.	5.1	56
87	News and EFIS. European Journal of Immunology, 2008, 38, 2367-2368.	2.9	0
88	Enhancement of anti-tumor activity in vitro and in vivo by CD150 and SAP. Molecular Immunology, 2008, 45, 796-804.	2.2	21
89	Altered glycosylation of recombinant NKp30 hampers binding to heparan sulfate: a lesson for the use of recombinant immunoreceptors as an immunological tool. Clycobiology, 2008, 18, 28-41.	2.5	53
90	Regulation of NK cell activity by 2B4, NTB-A and CRACC. Frontiers in Bioscience - Landmark, 2008, 13, 956.	3.0	48

#	Article	IF	CITATIONS
91	Identification of CLEC12B, an Inhibitory Receptor on Myeloid Cells. Journal of Biological Chemistry, 2007, 282, 22370-22375.	3.4	38
92	Inhibitory Receptor Signals Suppress Ligation-Induced Recruitment of NKG2D to GM1-Rich Membrane Domains at the Human NK Cell Immune Synapse. Journal of Immunology, 2007, 178, 5606-5611.	0.8	51
93	Serial Killing of Tumor Cells by Human Natural Killer Cells – Enhancement by Therapeutic Antibodies. PLoS ONE, 2007, 2, e326.	2.5	221
94	Blockade of natural killer cell-mediated lysis by NCAM140 expressed on tumor cells. International Journal of Cancer, 2007, 120, 2625-2634.	5.1	45
95	Modulation of 2B4 (CD244) activity and regulated SAP expression in human NK cells. European Journal of Immunology, 2007, 37, 193-198.	2.9	35
96	Expression Analysis of the Ligands for the Natural Killer Cell Receptors NKp30 and NKp44. PLoS ONE, 2007, 2, e1339.	2.5	87
97	Production and Use of Trimeric Isoleucine Zipper Fusion Proteins to Study Surface Receptor Ligand Interactions. Current Protocols in Protein Science, 2006, 43, Unit 19.11.	2.8	3
98	The role of CAP3 in CD95 signaling: new insights into the mechanism of procaspase-8 activation. Cell Death and Differentiation, 2006, 13, 489-498.	11.2	33
99	Regulation of 2B4 (CD244)-mediated NK cell activation by ligand-induced receptor modulation. European Journal of Immunology, 2006, 36, 3268-3276.	2.9	40
100	2B4 (CD244), NTB-A and CRACC (CS1) stimulate cytotoxicity but no proliferation in human NK cells. International Immunology, 2006, 18, 241-247.	4.0	52
101	Fine-tuning of immune responses by SLAM-related receptors. Journal of Leukocyte Biology, 2006, 79, 417-424.	3.3	28
102	Molecular Analysis of NTB-A Signaling: A Role for EAT-2 in NTB-A-Mediated Activation of Human NK Cells. Journal of Immunology, 2006, 177, 3170-3177.	0.8	42
103	CD48 Stimulation by 2B4 (CD244)-Expressing Targets Activates Human NK Cells. Journal of Immunology, 2006, 176, 4646-4650.	0.8	54
104	Molecular basis for positive and negative signaling by the natural killer cell receptor 2B4 (CD244). Blood, 2005, 105, 4722-4729.	1.4	184
105	The use of trimeric isoleucine-zipper fusion proteins to study surface-receptor–ligand interactions in natural killer cells. Journal of Immunological Methods, 2005, 296, 149-158.	1.4	16
106	Cutting Edge: NTB-A Activates NK Cells via Homophilic Interaction. Journal of Immunology, 2004, 172, 6524-6527.	0.8	74
107	Protocadherin FAT1 binds Ena/VASP proteins and is necessary for actin dynamics and cell polarization. EMBO Journal, 2004, 23, 3769-3779.	7.8	168
108	The NKG2D receptor and its ligands–recognition beyond the "missing self�. Microbes and Infection, 2003, 5, 31-37.	1.9	69

#	Article	IF	CITATIONS
109	Vav1 Dephosphorylation by the Tyrosine Phosphatase SHP-1 as a Mechanism for Inhibition of Cellular Cytotoxicity. Molecular and Cellular Biology, 2003, 23, 6291-6299.	2.3	239
110	Natural Killer Cell Inhibitory Receptors Block Actin Cytoskeleton-dependent Recruitment of 2B4 (CD244) to Lipid Rafts. Journal of Experimental Medicine, 2003, 197, 77-85.	8.5	118
111	Inhibition of natural killer cell activation signals by killer cell immunoglobulin-like receptors (CD158). Immunological Reviews, 2001, 181, 223-233.	6.0	130
112	How do killer cell Ig-like receptors inhibit natural killer cells?. , 2001, , 235-241.		0
113	Homogenous expression of killer cell immunoglobulin-like receptors (KIR) on polyclonal natural killer cells detected by a monoclonal antibody to KIR2D. Tissue Antigens, 2000, 56, 240-247.	1.0	4
114	Exposing tumor cells to killer cell attack. Nature Medicine, 2000, 6, 867-868.	30.7	17
115	Analysis of the CD95 (APO-1/Fas) Death-Inducing Signaling Complex by High-Resolution Two-Dimensional Gel Electrophoresis. Methods in Enzymology, 2000, 322, 363-373.	1.0	19
116	Phosphorylation of FADD/ MORT1 at Serine 194 and Association with a 70-kDa Cell Cycle-Regulated Protein Kinase. Journal of Immunology, 2000, 164, 1236-1242.	0.8	140
117	Cutting Edge: NK Cell Inhibitory Receptors Prevent Tyrosine Phosphorylation of the Activation Receptor 2B4 (CD244). Journal of Immunology, 2000, 165, 3545-3548.	0.8	96
118	The Role of c-FLIP in Modulation of CD95-induced Apoptosis. Journal of Biological Chemistry, 1999, 274, 1541-1548.	3.4	707
119	Apoptosis signaling in lymphocytes. Current Opinion in Immunology, 1999, 11, 277-285.	5.5	186
120	Differential Modulation of Apoptosis Sensitivity in CD95 Type I and Type II Cells. Journal of Biological Chemistry, 1999, 274, 22532-22538.	3.4	534
121	Isolation and Analysis of Components of CD95 (APO-1/Fas) Death-Inducing Signaling Complex. Methods, 1999, 17, 287-291.	3.8	44
122	DEDD, a novel death effector domain-containing protein, targeted to the nucleolus. EMBO Journal, 1998, 17, 5974-5986.	7.8	104
123	Activation of Mitochondria and Release of Mitochondrial Apoptogenic Factors by Betulinic Acid. Journal of Biological Chemistry, 1998, 273, 33942-33948.	3.4	323
124	Activation of the CD95 (APO-1/Fas) pathway in drug- and Î ³ -irradiation-induced apoptosis of brain tumor cells. Cell Death and Differentiation, 1998, 5, 884-893.	11.2	122
125	Two CD95 (APO-1/Fas) signaling pathways. EMBO Journal, 1998, 17, 1675-1687.	7.8	2,648
126	Bcl-xL Acts Downstream of Caspase-8 Activation by the CD95 Death-inducing Signaling Complex. Journal of Biological Chemistry, 1998, 273, 3388-3393.	3.4	100

#	Article	IF	CITATIONS
127	FLICE Is Predominantly Expressed as Two Functionally Active Isoforms, Caspase-8/a and Caspase-8/b. Journal of Biological Chemistry, 1997, 272, 26953-26958.	3.4	361
128	Viral FLICE-inhibitory proteins (FLIPs) prevent apoptosis induced by death receptors. Nature, 1997, 386, 517-521.	27.8	1,256
129	FLICE is activated by association with the CD95 death-inducing signaling complex (DISC). EMBO Journal, 1997, 16, 2794-2804.	7.8	1,073
130	Cleavage of FLICE (caspase-8) by granzyme B during cytotoxic T lymphocyte-induced apoptosis. European Journal of Immunology, 1997, 27, 3492-3498.	2.9	140
131	FLICE, A Novel FADD-Homologous ICE/CED-3–like Protease, Is Recruited to the CD95 (Fas/APO-1) Death-Inducing Signaling Complex. Cell, 1996, 85, 817-827.	28.9	2,944
132	The activating receptors 2B4 and NTB-A, but not CRACC are subject to ligand-induced down-regulation on human natural killer cells. Nature Precedings, 0, , .	0.1	0
133	Impact of low eGFR on the immune response against COVID-19. Journal of Nephrology, 0, , .	2.0	Ο