Brian Dennis Lichty

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9342669/publications.pdf

Version: 2024-02-01

91 papers 8,264 citations

41344 49 h-index 49909 87 g-index

96 all docs 96
docs citations

96 times ranked 9013 citing authors

#	Article	IF	Citations
1	Aerosol delivery, but not intramuscular injection, of adenovirus-vectored tuberculosis vaccine induces respiratory-mucosal immunity in humans. JCI Insight, 2022, 7, .	5.0	46
2	Respiratory mucosal delivery of next-generation COVID-19 vaccine provides robust protection against both ancestral and variant strains of SARS-CoV-2. Cell, 2022, 185, 896-915.e19.	28.9	189
3	Natural killer T cell immunotherapy combined with IL-15-expressing oncolytic virotherapy and PD-1 blockade mediates pancreatic tumor regression. , 2022, 10, e003923.		13
4	Probing effects of additives on the filterability of oncolytic viruses via a microfiltration process. Journal of Membrane Science, 2021, 620, 118783.	8.2	0
5	RNA editing enzyme APOBEC3A promotes pro-inflammatory M1 macrophage polarization. Communications Biology, 2021, 4, 102.	4.4	28
6	Synergistic anti-tumor efficacy of oncolytic influenza viruses and B7-H3 immune- checkpoint inhibitors against IC-resistant lung cancers. Oncolmmunology, 2021, 10, 1885778.	4.6	12
7	CXCR6 by increasing retention of memory CD8 ⁺ T cells in the ovarian tumor microenvironment promotes immunosurveillance and control of ovarian cancer., 2021, 9, e003329.		25
8	Spray dried VSV-vectored vaccine is thermally stable and immunologically active in vivo. Scientific Reports, 2020, 10, 13349.	3.3	11
9	Enhanced immunotherapeutic profile of oncolytic virus-based cancer vaccination using cyclophosphamide preconditioning., 2020, 8, e000981.		15
10	Immunological considerations for COVID-19 vaccine strategies. Nature Reviews Immunology, 2020, 20, 615-632.	22.7	806
11	Measles Vaccines Designed for Enhanced CD8+ T Cell Activation. Viruses, 2020, 12, 242.	3.3	15
12	Detection of Tumor Antigen-Specific T-Cell Responses After Oncolytic Vaccination. Methods in Molecular Biology, 2020, 2058, 191-211.	0.9	7
13	Oncolytic Maraba virus armed with tumor antigen boosts vaccine priming and reveals diverse therapeutic response patterns when combined with checkpoint blockade in ovarian cancer., 2019, 7, 189.		41
14	Purification of therapeutic adenoviruses using laterally-fed membrane chromatography. Journal of Membrane Science, 2019, 579, 351-358.	8.2	10
15	Excipient selection for thermally stable enveloped and non-enveloped viral vaccine platforms in dry powders. International Journal of Pharmaceutics, 2019, 561, 66-73.	5.2	22
16	Preclinical evaluation of a MAGE-A3 vaccination utilizing the oncolytic Maraba virus currently in first-in-human trials. Oncolmmunology, 2019, 8, e1512329.	4.6	53
17	Endogenous T cells prevent tumor immune escape following adoptive T cell therapy. Journal of Clinical Investigation, 2019, 129, 5400-5410.	8.2	76
18	Transforming the prostatic tumor microenvironment with oncolytic virotherapy. Oncolmmunology, 2018, 7, e1445459.	4.6	26

#	Article	IF	CITATIONS
19	Consecutive Spray Drying to Produce Coated Dry Powder Vaccines Suitable for Oral Administration. ACS Biomaterials Science and Engineering, 2018, 4, 1669-1678.	5.2	6
20	Oncolytic influenza virus infection restores immunocompetence of lung tumor-associated alveolar macrophages. Oncolmmunology, 2018, 7, e1423171.	4.6	26
21	Neoadjuvant oncolytic virotherapy before surgery sensitizes triple-negative breast cancer to immune checkpoint therapy. Science Translational Medicine, 2018, 10, .	12.4	242
22	Preclinical development of peptide vaccination combined with oncolytic MG1-E6E7 for HPV-associated cancer. Vaccine, 2018, 36, 2181-2192.	3.8	22
23	Sterile filtration of oncolytic viruses: An analysis of effects of membrane morphology on fouling and product recovery. Journal of Membrane Science, 2018, 548, 239-246.	8.2	20
24	Development and applications of oncolytic Maraba virus vaccines. Oncolytic Virotherapy, 2018, Volume 7, 117-128.	6.0	34
25	Customized Viral Immunotherapy for HPV-Associated Cancer. Cancer Immunology Research, 2017, 5, 847-859.	3.4	32
26	Maraba virus-vectored cancer vaccines represent a safe and novel therapeutic option for cats. Scientific Reports, 2017, 7, 15738.	3.3	11
27	Phase I study of oncolytic virus (OV) MG1 maraba/MAGE-A3 (MG1MA3), with and without transgenic MAGE-A3 adenovirus vaccine (AdMA3) in incurable advanced/metastatic MAGE-A3-expressing solid tumours: CCTG IND.214 Journal of Clinical Oncology, 2017, 35, e14637-e14637.	1.6	10
28	Surgical Stress Abrogates Pre-Existing Protective T Cell Mediated Anti-Tumor Immunity Leading to Postoperative Cancer Recurrence. PLoS ONE, 2016, 11, e0155947.	2.5	68
29	Oncolytic Viruses: Therapeutics With an Identity Crisis. EBioMedicine, 2016, 9, 31-36.	6.1	82
30	Privileged Antigen Presentation in Splenic B Cell Follicles Maximizes T Cell Responses in Prime-Boost Vaccination. Journal of Immunology, 2016, 196, 4587-4595.	0.8	35
31	S6K-STING interaction regulates cytosolic DNA–mediated activation of the transcription factor IRF3. Nature Immunology, 2016, 17, 514-522.	14.5	67
32	Cancer immunology and canine malignant melanoma: A comparative review. Veterinary Immunology and Immunopathology, 2016, 169, 15-26.	1.2	62
33	VEGF-Mediated Induction of PRD1-BF1/Blimp1 Expression Sensitizes Tumor Vasculature to Oncolytic Virus Infection. Cancer Cell, 2015, 28, 210-224.	16.8	77
34	Reciprocal cellular cross-talk within the tumor microenvironment promotes oncolytic virus activity. Nature Medicine, 2015, 21, 530-536.	30.7	118
35	Microvesicles: ubiquitous contributors to infection and immunity. Journal of Leukocyte Biology, 2015, 97, 237-245.	3.3	54
36	Maraba MG1 Virus Enhances Natural Killer Cell Function via Conventional Dendritic Cells to Reduce Postoperative Metastatic Disease. Molecular Therapy, 2014, 22, 1320-1332.	8.2	60

#	Article	IF	Citations
37	Maraba Virus as a Potent Oncolytic Vaccine Vector. Molecular Therapy, 2014, 22, 420-429.	8.2	134
38	Immunogenic HSV-mediated Oncolysis Shapes the Antitumor Immune Response and Contributes to Therapeutic Efficacy. Molecular Therapy, 2014, 22, 123-131.	8.2	93
39	Human Coronavirus OC43 Nucleocapsid Protein Binds MicroRNA 9 and Potentiates NF-κB Activation. Journal of Virology, 2014, 88, 54-65.	3.4	66
40	Going viral with cancer immunotherapy. Nature Reviews Cancer, 2014, 14, 559-567.	28.4	500
41	Evolution of oncolytic viruses: novel strategies for cancer treatment. Immunotherapy, 2013, 5, 1191-1206.	2.0	49
42	HDAC Inhibition Suppresses Primary Immune Responses, Enhances Secondary Immune Responses, and Abrogates Autoimmunity During Tumor Immunotherapy. Molecular Therapy, 2013, 21, 887-894.	8.2	98
43	Combining Oncolytic HSV-1 with Immunogenic Cell Death-Inducing Drug Mitoxantrone Breaks Cancer Immune Tolerance and Improves Therapeutic Efficacy. Cancer Immunology Research, 2013, 1, 309-319.	3.4	62
44	Oncolytic vesicular stomatitis virus quantitatively and qualitatively improves primary CD8 ⁺ T-cell responses to anticancer vaccines. Oncolmmunology, 2013, 2, e26013.	4.6	51
45	Delivery of viral-vectored vaccines by B cells represents a novel strategy to accelerate CD8+ T-cell recall responses. Blood, 2013, 121, 2432-2439.	1.4	36
46	ORFV: A Novel Oncolytic and Immune Stimulating Parapoxvirus Therapeutic. Molecular Therapy, 2012, 20, 1148-1157.	8.2	59
47	Expressing human interleukin-15 from oncolytic vesicular stomatitis virus improves survival in a murine metastatic colon adenocarcinoma model through the enhancement of anti-tumor immunity. Cancer Gene Therapy, 2012, 19, 238-246.	4.6	94
48	Harnessing Oncolytic Virus-mediated Antitumor Immunity in an Infected Cell Vaccine. Molecular Therapy, 2012, 20, 1791-1799.	8.2	70
49	IL-15 Can Signal via IL-15Rα, JNK, and NF-κB To Drive RANTES Production by Myeloid Cells. Journal of Immunology, 2012, 188, 4149-4157.	0.8	40
50	Strategies to Enhance Viral Penetration of Solid Tumors. Human Gene Therapy, 2011, 22, 1053-1060.	2.7	53
51	Adaptive Antiviral Immunity Is a Determinant of the Therapeutic Success of Oncolytic Virotherapy. Molecular Therapy, 2011, 19, 335-344.	8.2	88
52	A critical role for ILâ€15 in TLRâ€mediated innate antiviral immunity against genital HSVâ€2 infection. Immunology and Cell Biology, 2011, 89, 663-669.	2.3	13
53	Targeting Tumor Vasculature With an Oncolytic Virus. Molecular Therapy, 2011, 19, 886-894.	8.2	149
54	Aberrant interferon-signaling is associated with aggressive chronic lymphocytic leukemia. Blood, 2011, 117, 2668-2680.	1.4	48

#	Article	IF	CITATIONS
55	Vesicular Stomatitis Virus Oncolytic Treatment Interferes with Tumor-Associated Dendritic Cell Functions and Abrogates Tumor Antigen Presentation. Journal of Virology, 2011, 85, 12160-12169.	3.4	33
56	IL-15 and Type I Interferon Are Required for Activation of Tumoricidal NK Cells by Virus-Infected Dendritic Cells. Cancer Research, 2011, 71, 2497-2506.	0.9	49
57	Combining Oncolytic Viruses with Cancer Immunotherapy. , 2011, , 339-355.		O
58	Immunotherapy Can Reject Intracranial Tumor Cells without Damaging the Brain despite Sharing the Target Antigen. Journal of Immunology, 2010, 184, 4269-4275.	0.8	16
59	IL-15 has innate anti-tumor activity independent of NK and CD8 T cells. Journal of Leukocyte Biology, 2010, 88, 529-536.	3.3	23
60	FimH Can Directly Activate Human and Murine Natural Killer Cells via TLR4. Molecular Therapy, 2010, 18, 1379-1388.	8.2	65
61	A High-throughput Pharmacoviral Approach Identifies Novel Oncolytic Virus Sensitizers. Molecular Therapy, 2010, 18, 1123-1129.	8.2	85
62	Potentiating Cancer Immunotherapy Using an Oncolytic Virus. Molecular Therapy, 2010, 18, 1430-1439.	8.2	146
63	Synergistic Interaction Between Oncolytic Viruses Augments Tumor Killing. Molecular Therapy, 2010, 18, 888-895.	8.2	109
64	Combining oncolytic virotherapy and tumour vaccination. Cytokine and Growth Factor Reviews, 2010, 21, 143-148.	7.2	32
65	Intelligent Design: Combination Therapy With Oncolytic Viruses. Molecular Therapy, 2010, 18, 251-263.	8.2	177
66	The p14 FAST Protein of Reptilian Reovirus Increases Vesicular Stomatitis Virus Neuropathogenesis. Journal of Virology, 2009, 83, 552-561.	3.4	52
67	Recombinant Vesicular Stomatitis Virus Transduction of Dendritic Cells Enhances Their Ability to Prime Innate and Adaptive Antitumor Immunity. Molecular Therapy, 2009, 17, 1465-1472.	8.2	66
68	Vesicular Stomatitis Virus as a Novel Cancer Vaccine Vector to Prime Antitumor Immunity Amenable to Rapid Boosting With Adenovirus. Molecular Therapy, 2009, 17, 1814-1821.	8.2	95
69	Diplomatic immunity: turning a foe into an ally. Current Opinion in Molecular Therapeutics, 2009, 11, 13-21.	2.8	18
70	Using G-deleted vesicular stomatitis virus to probe the innate anti-viral response. Journal of Virological Methods, 2008, 153, 276-279.	2.1	5
71	A let-7 MicroRNA-sensitive Vesicular Stomatitis Virus Demonstrates Tumor-specific Replication. Molecular Therapy, 2008, 16, 1437-1443.	8.2	121
72	Heterologous Boosting of Recombinant Adenoviral Prime Immunization With a Novel Vesicular Stomatitis Virus–vectored Tuberculosis Vaccine. Molecular Therapy, 2008, 16, 1161-1169.	8.2	40

#	Article	IF	CITATIONS
73	Cigarette Smoke Suppresses Type I Interferon-Mediated Antiviral Immunity in Lung Fibroblast and Epithelial Cells. Journal of Interferon and Cytokine Research, 2008, 28, 167-179.	1.2	53
74	Cutting Edge: FimH Adhesin of Type 1 Fimbriae Is a Novel TLR4 Ligand. Journal of Immunology, 2008, 181, 6702-6706.	0.8	113
75	Carrier Cell-based Delivery of an Oncolytic Virus Circumvents Antiviral Immunity. Molecular Therapy, 2007, 15, 123-130.	8.2	171
76	Mucosal Luminal Manipulation of T Cell Geography Switches on Protective Efficacy by Otherwise Ineffective Parenteral Genetic Immunization. Journal of Immunology, 2007, 178, 2387-2395.	0.8	81
77	Use of recombinant virus-vectored tuberculosis vaccines for respiratory mucosal immunization. Tuberculosis, 2006, 86, 211-217.	1.9	61
78	Cigarette Smoke Impacts Immune Inflammatory Responses to Influenza in Mice. American Journal of Respiratory and Critical Care Medicine, 2006, 174, 1342-1351.	5.6	91
79	Effects of Intravenously Administered Recombinant Vesicular Stomatitis Virus (VSV Î"M51) on Multifocal and Invasive Gliomas. Journal of the National Cancer Institute, 2006, 98, 1546-1557.	6.3	88
80	Induction of Innate Immunity against Herpes Simplex Virus Type 2 Infection via Local Delivery of Toll-Like Receptor Ligands Correlates with Beta Interferon Production. Journal of Virology, 2006, 80, 9943-9950.	3.4	90
81	Matrix protein of Vesicular stomatitis virus harbours a cryptic mitochondrial-targeting motif. Journal of General Virology, 2006, 87, 3379-3384.	2.9	18
82	Vesicular Stomatitis Virus: A Potential Therapeutic Virus for the Treatment of Hematologic Malignancy. Human Gene Therapy, 2004, 15, 821-831.	2.7	76
83	Vesicular stomatitis virus: re-inventing the bullet. Trends in Molecular Medicine, 2004, 10, 210-216.	6.7	278
84	VSV strains with defects in their ability to shutdown innate immunity are potent systemic anti-cancer agents. Cancer Cell, 2003, 4, 263-275.	16.8	734
85	Exon-skipping in BCR/ABL is induced by ABL exon 2. Biochemical Journal, 2000, 348, 63.	3.7	3
86	Exploiting tumor-specific defects in the interferon pathway with a previously unknown oncolytic virus. Nature Medicine, 2000, 6, 821-825.	30.7	742
87	The Murine Double-Stranded RNA-Dependent Protein Kinase PKR Is Required for Resistance to Vesicular Stomatitis Virus. Journal of Virology, 2000, 74, 9580-9585.	3.4	190
88	Expression of p210 and p190 BCR-ABL due to alternative splicing in chronic myelogenous leukaemia. British Journal of Haematology, 1998, 103, 711-715.	2.5	53
89	Dysregulation of HOX11 by Chromosome Translocations in T-cell Acute Lymphoblastic Leukemia: A Paradigm for Homeobox Gene Involvement in Human Cancer. Leukemia and Lymphoma, 1995, 16, 209-215.	1.3	26
90	Characterization of the Shope Fibroma Virus DNA Ligase Gene. Virology, 1994, 202, 642-650.	2.4	17

#	Article	IF	CITATIONS
91	Oncolytic viruses: a step into cancer immunotherapy. Virus Adaptation and Treatment, 0, , 1.	1.5	4