
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9341118/publications.pdf Version: 2024-02-01

LOSE M DADO

#	Article	IF	CITATIONS
1	The phosphoinositide PI(3,5)P ₂ inhibits the activity of plant NHX proton/potassium antiporters: Advantages of a novel electrophysiological approach. Biomolecular Concepts, 2022, 13, 119-125.	2.2	1
2	Non-Expresser of PR-Genes 1 Positively Regulates Abscisic Acid Signaling in ArabidopsisÂthaliana. Plants, 2022, 11, 815.	3.5	3
3	HKT sodium and potassium transporters in <i>Arabidopsis thaliana</i> and related halophyte species. Physiologia Plantarum, 2021, 171, 546-558.	5.2	50
4	Beyond the patch lamp resolution: functional activity of nonelectrogenic vacuolar NHX proton/potassium antiporters and inhibition by phosphoinositides. New Phytologist, 2021, 229, 3026-3036.	7.3	18
5	Reassessing the Role of Potassium in Tomato Grown with Water Shortages. Horticulturae, 2021, 7, 20.	2.8	13
6	Insights into the mechanisms of transport and regulation of the arabidopsis high-affinity K+ transporter HAK51. Plant Physiology, 2021, 185, 1860-1874.	4.8	32
7	The role of PQL genes in response to salinity tolerance in Arabidopsis and barley. Plant Direct, 2021, 5, e00301.	1.9	1
8	Distinct Roles of N-Terminal Fatty Acid Acylation of the Salinity-Sensor Protein SOS3. Frontiers in Plant Science, 2021, 12, 691124.	3.6	8
9	The Arabidopsis protein NPF6.2/NRT1.4 is a plasma membrane nitrate transporter and a target of protein kinase CIPK23. Plant Physiology and Biochemistry, 2021, 168, 239-251.	5.8	13
10	ABAting the Response: A Novel ABA Signal Terminator that Disrupts the Hormone Co-receptor Complex. Molecular Plant, 2020, 13, 1241-1243.	8.3	0
11	The CIGANTEA-ENHANCED EM LEVEL Complex Enhances Drought Tolerance via Regulation of Abscisic Acid Synthesis. Plant Physiology, 2020, 184, 443-458.	4.8	42
12	HOS15 is a transcriptional corepressor of NPR1-mediated gene activation of plant immunity. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 30805-30815.	7.1	21
13	The Histone-Modifying Complex PWR/HOS15/HD2C Epigenetically Regulates Cold Tolerance. Plant Physiology, 2020, 184, 1097-1111.	4.8	32
14	PWR/HDA9/ABI4 Complex Epigenetically Regulates ABA Dependent Drought Stress Tolerance in Arabidopsis. Frontiers in Plant Science, 2020, 11, 623.	3.6	43
15	Coordinated Transport of Nitrate, Potassium, and Sodium. Frontiers in Plant Science, 2020, 11, 247.	3.6	98
16	Desensitization of ABA-Signaling: The Swing From Activation to Degradation. Frontiers in Plant Science, 2020, 11, 379.	3.6	69
17	Recognition and Activation of the Plant AKT1 Potassium Channel by the Kinase CIPK23. Plant Physiology, 2020, 182, 2143-2153.	4.8	51
18	ESCRT-I Component VPS23A Sustains Salt Tolerance by Strengthening the SOS Module in Arabidopsis. Molecular Plant, 2020, 13, 1134-1148.	8.3	37

#	Article	IF	CITATIONS
19	Rheostatic Control of ABA Signaling through HOS15-Mediated OST1 Degradation. Molecular Plant, 2019, 12, 1447-1462.	8.3	58
20	Editorial: Resistance to Salinity and Water Scarcity in Higher Plants. Insights From Extremophiles and Stress-Adapted Plants: Tools, Discoveries and Future Prospects. Frontiers in Plant Science, 2019, 10, 373.	3.6	6
21	A Critical Role of Sodium Flux via the Plasma Membrane Na ⁺ /H ⁺ Exchanger SOS1 in the Salt Tolerance of Rice. Plant Physiology, 2019, 180, 1046-1065.	4.8	149
22	Regulation of K+ Nutrition in Plants. Frontiers in Plant Science, 2019, 10, 281.	3.6	217
23	Pleiotropic effects of enhancing vacuolar K/H exchange in tomato. Physiologia Plantarum, 2018, 163, 88-102.	5.2	9
24	Upstream kinases of plant Sn <scp>RK</scp> s are involved in salt stress tolerance. Plant Journal, 2018, 93, 107-118.	5.7	64
25	K ⁺ Efflux Antiporters 4, 5, and 6 Mediate pH and K ⁺ Homeostasis in Endomembrane Compartments. Plant Physiology, 2018, 178, 1657-1678.	4.8	65
26	Epigenetic switch from repressive to permissive chromatin in response to cold stress. Proceedings of the United States of America, 2018, 115, E5400-E5409.	7.1	157
27	Molecular Interactions Between Flowering Time and Abiotic Stress Pathways. International Review of Cell and Molecular Biology, 2016, 327, 371-412.	3.2	24
28	A Single Amino-Acid Substitution in the Sodium Transporter HKT1 Associated with Plant Salt Tolerance. Plant Physiology, 2016, 171, 2112-2126.	4.8	93
29	CIPK23 regulates HAK5-mediated high-affinity K+ uptake in Arabidopsis roots. Plant Physiology, 2015, 169, pp.01401.2015.	4.8	174
30	A novel thiol-reductase activity of Arabidopsis YUC6 confers drought tolerance independently of auxin biosynthesis. Nature Communications, 2015, 6, 8041.	12.8	82
31	Structural basis of the regulatory mechanism of the plant CIPK family of protein kinases controlling ion homeostasis and abiotic stress. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E4532-41.	7.1	81
32	Control of vacuolar dynamics and regulation of stomatal aperture by tonoplast potassium uptake. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E1806-14.	7.1	171
33	The <scp>TRANSPLANTA</scp> collection of <scp>A</scp> rabidopsis lines: a resource for functional analysis of transcription factors based on their conditional overexpression. Plant Journal, 2014, 77, 944-953.	5.7	104
34	A constitutively active form of a durum wheat Na+/H+ antiporter SOS1 confers high salt tolerance to transgenic Arabidopsis. Plant Cell Reports, 2014, 33, 277-288.	5.6	94
35	Release of SOS2 kinase from sequestration with GIGANTEA determines salt tolerance in Arabidopsis. Nature Communications, 2013, 4, 1352.	12.8	220
36	The Salt Overly Sensitive (SOS) Pathway: Established and Emerging Roles. Molecular Plant, 2013, 6, 275-286.	8.3	528

#	Article	IF	CITATIONS
37	A Saccharomyces cerevisiae Assay System to Investigate Ligand/AdipoR1 Interactions That Lead to Cellular Signaling. PLoS ONE, 2013, 8, e65454.	2.5	12
38	Ion Exchangers NHX1 and NHX2 Mediate Active Potassium Uptake into Vacuoles to Regulate Cell Turgor and Stomatal Function in <i>Arabidopsis</i> . Plant Cell, 2012, 24, 1127-1142.	6.6	533
39	Structural Insights on the Plant Salt-Overly-Sensitive 1 (SOS1) Na+/H+ Antiporter. Journal of Molecular Biology, 2012, 424, 283-294.	4.2	49
40	Expression of wheat Na+/H+ antiporter TNHXS1 and H+- pyrophosphatase TVP1 genes in tobacco from a bicistronic transcriptional unit improves salt tolerance. Plant Molecular Biology, 2012, 79, 137-155.	3.9	107
41	Na+ and K+ Transporters in Plant Signaling. Signaling and Communication in Plants, 2011, , 65-98.	0.7	27
42	Regulation of durum wheat Na+/H+ exchanger TdSOS1 by phosphorylation. Plant Molecular Biology, 2011, 76, 545-556.	3.9	48
43	Activation of the plasma membrane Na/H antiporter Salt-Overly-Sensitive 1 (SOS1) by phosphorylation of an auto-inhibitory C-terminal domain. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 2611-2616.	7.1	341
44	Biotechnology of water and salinity stress tolerance. Current Opinion in Biotechnology, 2010, 21, 185-196.	6.6	182
45	The AtNHX1 exchanger mediates potassium compartmentation in vacuoles of transgenic tomato. Plant Journal, 2010, 61, 495-506.	5.7	268
46	How do vacuolar NHX exchangers function in plant salt tolerance?. Plant Signaling and Behavior, 2010, 5, 792-795.	2.4	147
47	The Na ⁺ /H ⁺ exchanger SOS1 controls extrusion and distribution of Na ⁺ in tomato plants under salinity conditions. Plant Signaling and Behavior, 2009, 4, 973-976.	2.4	65
48	The Phosphate Transporter PHT4;6 Is a Determinant of Salt Tolerance that Is Localized to the Golgi Apparatus of Arabidopsis. Molecular Plant, 2009, 2, 535-552.	8.3	83
49	Loss of Halophytism by Interference with SOS1 Expression. Plant Physiology, 2009, 151, 210-222.	4.8	254
50	Mutants of the Arabidopsis thaliana Cation/H+ Antiporter AtNHX1 Conferring Increased Salt Tolerance in Yeast. Journal of Biological Chemistry, 2009, 284, 14276-14285.	3.4	71
51	Phosphorylation of SOS3-LIKE CALCIUM BINDING PROTEIN8 by SOS2 Protein Kinase Stabilizes Their Protein Complex and Regulates Salt Tolerance in <i>Arabidopsis</i> Â. Plant Cell, 2009, 21, 1607-1619.	6.6	228
52	The plasma membrane Na ⁺ /H ⁺ antiporter SOS1 is essential for salt tolerance in tomato and affects the partitioning of Na ⁺ between plant organs. Plant, Cell and Environment, 2009, 32, 904-916.	5.7	313
53	Functional characterization of a wheat plasma membrane Na+/H+ antiporter in yeast. Archives of Biochemistry and Biophysics, 2008, 473, 8-15.	3.0	104
54	Conservation of the Salt Overly Sensitive Pathway in Rice. Plant Physiology, 2007, 143, 1001-1012.	4.8	512

#	Article	IF	CITATIONS
55	SCABP8/CBL10, a Putative Calcium Sensor, Interacts with the Protein Kinase SOS2 to Protect Arabidopsis Shoots from Salt Stress. Plant Cell, 2007, 19, 1415-1431.	6.6	492
56	Alkali cation exchangers: roles in cellular homeostasis and stress tolerance. Journal of Experimental Botany, 2006, 57, 1181-1199.	4.8	385
57	Osmotin Is a Homolog of Mammalian Adiponectin and Controls Apoptosis in Yeast through a Homolog of Mammalian Adiponectin Receptor. Molecular Cell, 2005, 17, 171-180.	9.7	179
58	Salt stress enhances xylem development and expression of S-adenosyl-l-methionine synthase in lignifying tissues of tomato plants. Planta, 2004, 220, 278-285.	3.2	168
59	Transgenic Evaluation of Activated Mutant Alleles of SOS2 Reveals a Critical Requirement for Its Kinase Activity and C-Terminal Regulatory Domain for Salt Tolerance in Arabidopsis thaliana. Plant Cell, 2004, 16, 435-449.	6.6	163
60	Regulation of Vacuolar Na+/H+ Exchange in Arabidopsis thaliana by the Salt-Overly-Sensitive (SOS) Pathway. Journal of Biological Chemistry, 2004, 279, 207-215.	3.4	337
61	Inorganic Cations Mediate Plant PR5 Protein Antifungal Activity through Fungal Mnn1- and Mnn4-Regulated Cell Surface Glycans. Molecular Plant-Microbe Interactions, 2004, 17, 780-788.	2.6	26
62	The STT3a Subunit Isoform of the Arabidopsis Oligosaccharyltransferase Controls Adaptive Responses to Salt/Osmotic Stress. Plant Cell, 2003, 15, 2273-2284.	6.6	202
63	In Defense against Pathogens. Both Plant Sentinels and Foot Soldiers Need to Know the Enemy,. Plant Physiology, 2003, 131, 1580-1590.	4.8	122
64	Reconstitution in yeast of the Arabidopsis SOS signaling pathway for Na+ homeostasis. Proceedings of the United States of America, 2002, 99, 9061-9066.	7.1	500
65	An Osmotically Induced Cytosolic Ca2+ Transient Activates Calcineurin Signaling to Mediate Ion Homeostasis and Salt Tolerance of Saccharomyces cerevisiae. Journal of Biological Chemistry, 2002, 277, 33075-33080.	3.4	133
66	The Arabidopsis Na+/H+Exchanger AtNHX1 Catalyzes Low Affinity Na+ and K+ Transport in Reconstituted Liposomes. Journal of Biological Chemistry, 2002, 277, 2413-2418.	3.4	201
67	The Putative Plasma Membrane Na+/H+ Antiporter SOS1 Controls Long-Distance Na+ Transport in Plants. Plant Cell, 2002, 14, 465-477.	6.6	1,127
68	Plants and sodium ions: keeping company with the enemy. Genome Biology, 2002, 3, reviews1017.1.	9.6	83
69	Differential expression and function of Arabidopsis thaliana NHX Na+/H+ antiporters in the salt stress response. Plant Journal, 2002, 30, 529-539.	5.7	491
70	The Long and Winding Road to Halotolerance Genes. , 2002, , 505-533.		10
71	A Plant Defense Response Effector Induces Microbial Apoptosis. Molecular Cell, 2001, 8, 921-930.	9.7	151
72	Resistance to the plant PR-5 protein osmotin in the model fungus Saccharomyces cerevisiae is mediated by the regulatory effects of SSD1 on cell wall composition. Plant Journal, 2001, 25, 271-280.	5.7	53

#	Article	IF	CITATIONS
73	Tobacco and Arabidiopsis SLT1 mediate salt tolerance of yeast. Plant Molecular Biology, 2001, 45, 489-500.	3.9	19
74	Fungal cell wall phosphomannans facilitate the toxic activity of a plant PR-5 protein. Plant Journal, 2000, 23, 375-383.	5.7	89
75	The dawn of plant salt tolerance genetics. Trends in Plant Science, 2000, 5, 317-319.	8.8	109
76	Functional conservation between yeast and plant endosomal Na+/H+antiporters1. FEBS Letters, 2000, 471, 224-228.	2.8	160
77	Regulation of Ion Homestasis in Plants and Fungi. , 2000, , 255-267.		0
78	Plants use calcium to resolve salt stress. Trends in Plant Science, 1998, 3, 411-412.	8.8	113
79	Osmotin, a Plant Antifungal Protein, Subverts Signal Transduction to Enhance Fungal Cell Susceptibility. Molecular Cell, 1998, 1, 807-817.	9.7	120
80	Stress signaling through Ca2+/calmodulin-dependent protein phosphatase calcineurin mediates salt adaptation in plants. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 9681-9686.	7.1	202
81	Stress proteins on the yeast cell surface determine resistance to osmotin, a plant antifungal protein. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 7082-7087.	7.1	139
82	Salt-Sensitive Mutants of Chlamydomonas reinhardtii Isolated after Insertional Tagging. Plant Physiology, 1996, 112, 99-104.	4.8	18
83	Phosphate transporters from the higher plant Arabidopsis thaliana Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 10519-10523.	7.1	433
84	Activated Calcineurin Confers High Tolerance to Ion Stress and Alters the Budding Pattern and Cell Morphology of Yeast Cells. Journal of Biological Chemistry, 1996, 271, 23061-23067.	3.4	99
85	Cloning Salt Tolerance Genes by Insertional Mutagenesis Tagging and Gene Complementation. , 1996, , 101-113.		4
86	Ion Homeostasis in NaCl Stress Environments. Plant Physiology, 1995, 109, 735-742.	4.8	745
87	Molecular characterization of glyoxalase-I from a higher plant; upregulation by stress. Plant Molecular Biology, 1995, 29, 1223-1233.	3.9	163
88	Differential accumulation of S-adenosylmethionine synthetase transcripts in response to salt stress. Plant Molecular Biology, 1994, 25, 217-227.	3.9	175
89	Regulation of root plasma membrane H+-ATPase in sunflower seedlings. Plant Science, 1991, 79, 163-172.	3.6	36
90	Immunocytolocalization of Plasma Membrane H ⁺ -ATPase. Plant Physiology, 1990, 93, 1654-1658.	4.8	129

#	Article	IF	CITATIONS
91	A tomato cDNA inducible by salt stress and abscisic acid: nucleotide sequence and expression pattern. Plant Molecular Biology, 1990, 15, 695-705.	3.9	127
92	Biochemical characterization of two cloned resistance determinants encoding a paromomycin acetyltransferase and a paromomycin phosphotransferase from Streptomyces rimosus forma paromomycinus. Journal of Bacteriology, 1989, 171, 329-334.	2.2	13
93	Similar short elements in the 5′ regions of theSTA2 andSCAgenes fromSaccharomyces cerevisiae. FEBS Letters, 1988, 239, 179-184.	2.8	15
94	Purification and characterization of a hygromycin B phosphotransferase from Streptomyces hygroscopicus. FEBS Journal, 1987, 162, 419-422.	0.2	14
95	Cloning of theSTA2 andSGAgenes encoding glucoamylases in yeasts and regulation of their expression by theSTA10 gene ofSaccharomyces cerevisiae. Nucleic Acids Research, 1986, 14, 4701-4718.	14.5	39