
Paul H E Tiesinga

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9340550/publications.pdf Version: 2024-02-01

DALLE H F TIESINGA

#	Article	IF	CITATIONS
1	A Standards Organization for Open and FAIR Neuroscience: the International Neuroinformatics Coordinating Facility. Neuroinformatics, 2022, 20, 25-36.	2.8	26
2	Geodesic-based distance reveals nonlinear topological features in neural activity from mouse visual cortex. Biological Cybernetics, 2022, 116, 53-68.	1.3	4
3	Recommendations for repositories and scientific gateways from a neuroscience perspective. Scientific Data, 2022, 9, 212.	5.3	3
4	Flexible Frequency Switching in Adult Mouse Visual Cortex Is Mediated by Competition Between Parvalbumin and Somatostatin Expressing Interneurons. Neural Computation, 2021, 33, 926-966.	2.2	7
5	Biological Cybernetics: 60 years and more to come. Biological Cybernetics, 2021, 115, 5-6.	1.3	4
6	Uncovering Statistical Links Between Gene Expression and Structural Connectivity Patterns in the Mouse Brain. Neuroinformatics, 2021, 19, 649-667.	2.8	2
7	Learning at Variable Attentional Load Requires Cooperation of Working Memory, Meta-learning, and Attention-augmented Reinforcement Learning. Journal of Cognitive Neuroscience, 2021, 34, 1-29.	2.3	8
8	Progress towards a cellularly resolved mouse mesoconnectome is empowered by data fusion and new neuroanatomy techniques. Neuroscience and Biobehavioral Reviews, 2021, 128, 569-591.	6.1	2
9	Comprehensive characterization of oscillatory signatures in a model circuit with PV- and SOM-expressing interneurons. Biological Cybernetics, 2021, 115, 487-517.	1.3	8
10	Adaptive spike-artifact removal from local field potentials uncovers prominent beta and gamma band neuronal synchronization. Journal of Neuroscience Methods, 2020, 330, 108485.	2.5	21
11	Multiple Midfrontal Thetas Revealed by Source Separation of Simultaneous MEG and EEG. Journal of Neuroscience, 2020, 40, 7702-7713.	3.6	45
12	Human stereoEEG recordings reveal network dynamics of decision-making in a rule-switching task. Nature Communications, 2020, 11, 3075.	12.8	13
13	Prediction of a Cell-Class-Specific Mouse Mesoconnectome Using Gene Expression Data. Neuroinformatics, 2020, 18, 611-626.	2.8	4
14	Where is Cingulate Cortex? A Cross-Species View. Trends in Neurosciences, 2020, 43, 285-299.	8.6	150
15	Sensitivity to Stimulus Irregularity Is Inherent in Neural Networks. Neural Computation, 2019, 31, 1789-1824.	2.2	4
16	Feature-specific prediction errors and surprise across macaque fronto-striatal circuits. Nature Communications, 2019, 10, 176.	12.8	50
17	Cellular diversity of the somatosensory cortical map plasticity. Neuroscience and Biobehavioral Reviews, 2018, 84, 100-115.	6.1	24
18	Characterization of network structure in stereoEEG data using consensus-based partial coherence. NeuroImage, 2018, 179, 385-402.	4.2	6

PAUL H E TIESINGA

#	Article	IF	CITATIONS
19	Anti-correlations in the degree distribution increase stimulus detection performance in noisy spiking neural networks. Journal of Computational Neuroscience, 2017, 42, 87-106.	1.0	7
20	The missing link: Predicting connectomes from noisy and partially observed tract tracing data. PLoS Computational Biology, 2017, 13, e1005374.	3.2	6
21	Top-down control of cortical gamma-band communication via pulvinar induced phase shifts in the alpha rhythm. PLoS Computational Biology, 2017, 13, e1005519.	3.2	35
22	Connectomic Analysis of Brain Networks: Novel Techniques and Future Directions. Frontiers in Neuroanatomy, 2016, 10, 110.	1.7	23
23	A Developmental Switch for Hebbian Plasticity. PLoS Computational Biology, 2015, 11, e1004386.	3.2	12
24	Feeding the human brain model. Current Opinion in Neurobiology, 2015, 32, 107-114.	4.2	17
25	Circuit to Construct Mapping: A Mathematical Tool for Assisting the Diagnosis and Treatment in Major Depressive Disorder. Frontiers in Psychiatry, 2015, 6, 29.	2.6	12
26	The Scalable Brain Atlas: Instant Web-Based Access to Public Brain Atlases and Related Content. Neuroinformatics, 2015, 13, 353-366.	2.8	245
27	Oscillatory mechanisms of feedforward and feedback visual processing. Trends in Neurosciences, 2015, 38, 192-194.	8.6	87
28	Dynamic circuit motifs underlying rhythmic gain control, gating and integration. Nature Neuroscience, 2014, 17, 1031-1039.	14.8	294
29	Dependence of V2 illusory contour response on V1 cell properties and topographic organization. Biological Cybernetics, 2014, 108, 337-354.	1.3	12
30	Reduced delta power and synchrony and increased gamma power during the P3 time window in schizophrenia. Schizophrenia Research, 2013, 150, 266-268.	2.0	13
31	Robust Gamma Coherence between Macaque V1 and V2 by Dynamic Frequency Matching. Neuron, 2013, 78, 523-536.	8.1	234
32	Simultaneous stability and sensitivity in model cortical networks is achieved through anti-correlations between the in- and out-degree of connectivity. Frontiers in Computational Neuroscience, 2013, 7, 156.	2.1	12
33	Long non-coding RNAs in neurodevelopmental disorders. Frontiers in Molecular Neuroscience, 2013, 6, 53.	2.9	53
34	Motifs in health and disease: the promise of circuit interrogation by optogenetics. European Journal of Neuroscience, 2012, 36, 2260-2272.	2.6	16
35	Subclasses of oligodendrocytes populate the mouse hippocampus. European Journal of Neuroscience, 2010, 31, 425-438.	2.6	34
36	Hedonic and nucleus accumbens neural responses to a natural reward are regulated by aversive conditioning. Learning and Memory, 2010, 17, 539-546.	1.3	67

PAUL H E TIESINGA

#	Article	IF	CITATIONS
37	Cortical Enlightenment: Are Attentional Gamma Oscillations Driven by ING or PING?. Neuron, 2009, 63, 727-732.	8.1	381
38	Regulation of spike timing in visual cortical circuits. Nature Reviews Neuroscience, 2008, 9, 97-107.	10.2	313
39	Attentional modulation of firing rate and synchrony in a model cortical network. Journal of Computational Neuroscience, 2006, 20, 247-264.	1.0	103
40	The Possible Role of Spike Patterns in Cortical Information Processing. Journal of Computational Neuroscience, 2005, 18, 275-286.	1.0	18
41	Stimulus Competition by Inhibitory Interference. Neural Computation, 2005, 17, 2421-2453.	2.2	26
42	Influence of Ionic Conductances on Spike Timing Reliability of Cortical Neurons for Suprathreshold Rhythmic Inputs. Journal of Neurophysiology, 2004, 91, 194-205.	1.8	88
43	Discovering Spike Patterns in Neuronal Responses. Journal of Neuroscience, 2004, 24, 2989-3001.	3.6	177