
Mercedes Alfonso-Prieto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9340438/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structure-function relationships of the disease-linked A218T oxytocin receptor variant. Molecular Psychiatry, 2022, 27, 907-917.	7.9	17
2	Robust principal component analysisâ€based prediction of <scp>proteinâ€protein</scp> interaction hot spots. Proteins: Structure, Function and Bioinformatics, 2021, 89, 639-647.	2.6	11
3	Mechanisms Underlying Proton Release in CLC-type F [–] /H ⁺ Antiporters. Journal of Physical Chemistry Letters, 2021, 12, 4415-4420.	4.6	10
4	Bitter Taste and Olfactory Receptors: Beyond Chemical Sensing in the Tongue and the Nose. Journal of Membrane Biology, 2021, 254, 343-352.	2.1	4
5	Subunit-Specific Photocontrol of Glycine Receptors by Azobenzene-Nitrazepam Photoswitcher. ENeuro, 2021, 8, ENEURO.0294-20.2020.	1.9	9
6	Photopharmacology of Ion Channels through the Light of the Computational Microscope. International Journal of Molecular Sciences, 2021, 22, 12072.	4.1	6
7	Ligand Pose Predictions for Human G Protein-Coupled Receptors: Insights from the Amber-Based Hybrid Molecular Mechanics/Coarse-Grained Approach. Journal of Chemical Information and Modeling, 2020, 60, 5103-5116.	5.4	9
8	Neprilysin-neuropeptide Y axis as a target for treatment of liver fibrosis and portal hypertension. Journal of Hepatology, 2020, 73, S29.	3.7	0
9	Photocontrol of Endogenous Glycine Receptors InÂVivo. Cell Chemical Biology, 2020, 27, 1425-1433.e7.	5.2	16
10	Hybrid MM/CG Webserver: Automatic Set Up of Molecular Mechanics/Coarse-Grained Simulations for Human G Protein-Coupled Receptor/Ligand Complexes. Frontiers in Molecular Biosciences, 2020, 7, 576689.	3.5	7
11	Characterization of cancer-associated IDH2 mutations that differ in tumorigenicity, chemosensitivity and 2-hydroxyglutarate production. Oncotarget, 2019, 10, 2675-2692.	1.8	13
12	Dual binding mode of "bitter sugars―to their human bitter taste receptor target. Scientific Reports, 2019, 9, 8437.	3.3	31
13	Understanding Ligand Binding to G-Protein Coupled Receptors Using Multiscale Simulations. Frontiers in Molecular Biosciences, 2019, 6, 29.	3.5	30
14	Discovery of processive catalysis by an exo-hydrolase with a pocket-shaped active site. Nature Communications, 2019, 10, 2222.	12.8	20
15	A photoswitchable GABA receptor channel blocker. British Journal of Pharmacology, 2019, 176, 2661-2677.	5.4	20
16	Multiscale simulations on human Frizzled and Taste2 GPCRs. Current Opinion in Structural Biology, 2019, 55, 8-16.	5.7	9
17	Predicting ligand binding poses for low-resolution membrane protein models: Perspectives from multiscale simulations. Biochemical and Biophysical Research Communications, 2018, 498, 366-374.	2.1	32
18	Oxazoline or Oxazolinium Ion? The Protonation State and Conformation of the Reaction Intermediate of Chitinase Enzymes Revisited. Chemistry - A European Journal, 2018, 24, 19258-19265.	3.3	24

#	Article	IF	CITATIONS
19	Multi-scale simulations of membrane proteins: The case of bitter taste receptors. Journal of Science: Advanced Materials and Devices, 2017, 2, 15-21.	3.1	11
20	Agonist Binding to Chemosensory Receptors: A Systematic Bioinformatics Analysis. Frontiers in Molecular Biosciences, 2017, 4, 63.	3.5	36
21	Mechanism of Ribonuclease III Catalytic Regulation by Serine Phosphorylation. Scientific Reports, 2016, 6, 25448.	3.3	11
22	Interaction of Ribonuclease III with the Regulatory Macrodomain Protein YmdB Analyzed by Docking Calculations and SPR Experiments. Biophysical Journal, 2015, 108, 225a.	0.5	0
23	Combined computational and experimental analysis of a complex of ribonuclease III and the regulatory macrodomain protein, YmdB. Proteins: Structure, Function and Bioinformatics, 2015, 83, 459-472.	2.6	12
24	High-resolution structures of the M2 channel from influenza A virus reveal dynamic pathways for proton stabilization and transduction. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14260-14265.	7.1	92
25	Catalytic Metal Ions and Enzymatic Processing of DNA and RNA. Accounts of Chemical Research, 2015, 48, 220-228.	15.6	130
26	An Integrated Biological Approach to Guide the Development of Metal-Chelating Inhibitors of Influenza Virus PA Endonuclease. Molecular Pharmacology, 2015, 87, 323-337.	2.3	33
27	The Molecular Mechanism of the Catalase-like Activity in Horseradish Peroxidase. Journal of the American Chemical Society, 2015, 137, 11170-11178.	13.7	86
28	Density Functional Theory-Based Treatments of Metal-Binding Sites in Metalloenzymes: Challenges and Opportunities. , 2015, , 95-116.		0
29	Magnesium-Dependent RNA Binding to the PA Endonuclease Domain of the Avian Influenza Polymerase. Journal of Physical Chemistry B, 2014, 118, 873-889.	2.6	19
30	Interaction of the Inward Rectifier Potassium Channel Kir 2.2 with Phosphatidylserine. Biophysical Journal, 2014, 106, 99a.	0.5	0
31	PIP2-Mediated Gating of the Inward Rectifier Potassium Channel Kir2.2. Biophysical Journal, 2013, 104, 431a.	0.5	0
32	The reaction mechanisms of heme catalases: An atomistic view by ab initio molecular dynamics. Archives of Biochemistry and Biophysics, 2012, 525, 121-130.	3.0	57
33	Catalases versus peroxidases: DFT investigation of H2O2 oxidation in models systems and implications for heme protein engineering. Journal of Inorganic Biochemistry, 2012, 117, 292-297.	3.5	43
34	Proton Transfer Drives Protein Radical Formation in Helicobacter pylori Catalase but Not in Penicillium vitale Catalase. Journal of the American Chemical Society, 2011, 133, 4285-4298.	13.7	25
35	Role of the Axial Base in the Modulation of the Cob(I)alamin Electronic Properties: Insight from QM/MM, DFT, and CASSCF Calculations. Journal of Chemical Theory and Computation, 2011, 7, 1541-1551.	5.3	31
36	Reâ€engineering specificity in 1,3â€1, 4â€Î²â€glucanase to accept branched xyloglucan substrates. Proteins: Structure, Function and Bioinformatics, 2011, 79, 365-375.	2.6	12

#	ARTICLE	IF	CITATIONS
37	Modulation of Aβ ₄₂ fìbrillogenesis by glycosaminoglycan structure. FASEB Journal, 2010, 24, 4250-4261.	0.5	66
38	Substrate Recognition in the <i>Escherichia coli</i> Ammonia Channel AmtB: A QM/MM Investigation. Journal of Physical Chemistry B, 2010, 114, 11859-11865.	2.6	12
39	Reductive Cleavage Mechanism of Coâ^'C Bond in Cobalamin-Dependent Methionine Synthase. Journal of Physical Chemistry B, 2010, 114, 12965-12971.	2.6	32
40	The dynamic role of distal side residues in heme hydroperoxidase catalysis. Interplay between X-ray crystallography and ab initio MD simulations. Archives of Biochemistry and Biophysics, 2010, 500, 37-44.	3.0	16
41	On the Role of Water in Peroxidase Catalysis: A Theoretical Investigation of HRP Compound I Formation. Journal of Physical Chemistry B, 2010, 114, 5161-5169.	2.6	89
42	The Molecular Mechanism of the Catalase Reaction. Journal of the American Chemical Society, 2009, 131, 11751-11761.	13.7	325
43	Electronic State of the Molecular Oxygen Released by Catalase. Journal of Physical Chemistry A, 2008, 112, 12842-12848.	2.5	14
44	The Effect of a Water Molecule on the Mechanism of Formation of Compound 0 in Horseradish Peroxidase. Journal of the American Chemical Society, 2007, 129, 6346-6347.	13.7	99
45	Versatility of the Electronic Structure of Compound I in Catalase-Peroxidases. Journal of the American Chemical Society, 2007, 129, 13436-13446.	13.7	47
46	The Structures and Electronic Configuration of Compound I Intermediates ofHelicobacterpyloriandPenicillium vitaleCatalases Determined by X-ray Crystallography and QM/MM Density Functional Theory Calculations. Journal of the American Chemical Society, 2007, 129, 4193-4205.	13.7	58
47	A first principles study of the binding of formic acid in catalase complementing high resolution X-ray structures. Chemical Physics, 2006, 323, 129-137.	1.9	11
48	Neprilysin-Dependent Neuropeptide Y Cleavage in the Liver Promotes Fibrosis by Blocking Npy-Receptor 1. SSRN Electronic Journal, O. , .	0.4	0