Thomas D Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9338543/publications.pdf

Version: 2024-02-01

28 papers 9,278 citations

304368
22
h-index

27 g-index

29 all docs 29 docs citations

29 times ranked 21589 citing authors

#	Article	IF	CITATIONS
1	Mechanistic convergence of the TIGIT and PD-1 inhibitory pathways necessitates co-blockade to optimize anti-tumor CD8+ TÂcell responses. Immunity, 2022, 55, 512-526.e9.	6.6	118
2	Antigen-derived peptides engage the ER stress sensor IRE1 $\hat{l}\pm$ to curb dendritic cell cross-presentation. Journal of Cell Biology, 2022, 221, .	2.3	17
3	Intratumoral CD103+ CD8+ T cells predict response to PD-L1 blockade. , 2021, 9, e002231.		69
4	Decoding non-canonical mRNA decay by the endoplasmic-reticulum stress sensor IRE1 $\hat{l}\pm$. Nature Communications, 2021, 12, 7310.	5.8	24
5	Peripheral T cell expansion predicts tumour infiltration and clinical response. Nature, 2020, 579, 274-278.	13.7	439
6	IRE1α Disruption in Triple-Negative Breast Cancer Cooperates with Antiangiogenic Therapy by Reversing ER Stress Adaptation and Remodeling the Tumor Microenvironment. Cancer Research, 2020, 80, 2368-2379.	0.4	44
7	CD226 regulates natural killer cell antitumor responses via phosphorylation-mediated inactivation of transcription factor FOXO1. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E11731-E11740.	3.3	36
8	Two Escape Mechanisms of Influenza A Virus to a Broadly Neutralizing Stalk-Binding Antibody. PLoS Pathogens, 2016, 12, e1005702.	2.1	78
9	Bitpacking techniques for indexing genomes: II.ÂEnhanced suffix arrays. Algorithms for Molecular Biology, 2016, 11, 9.	0.3	2
10	Bitpacking techniques for indexing genomes: I. Hash tables. Algorithms for Molecular Biology, 2016, 11, 5.	0.3	3
11	GMAP and GSNAP for Genomic Sequence Alignment: Enhancements to Speed, Accuracy, and Functionality. Methods in Molecular Biology, 2016, 1418, 283-334.	0.4	354
12	Comprehensive genomic analysis of malignant pleural mesothelioma identifies recurrent mutations, gene fusions and splicing alterations. Nature Genetics, 2016, 48, 407-416.	9.4	730
13	Prediction and Quantification of Splice Events from RNA-Seq Data. PLoS ONE, 2016, 11, e0156132.	1.1	102
14	A comprehensive transcriptional portrait of human cancer cell lines. Nature Biotechnology, 2015, 33, 306-312.	9.4	556
15	Spectrum of diverse genomic alterations define non–clear cell renal carcinoma subtypes. Nature Genetics, 2015, 47, 13-21.	9.4	310
16	Integrated exome and transcriptome sequencing reveals ZAK isoform usage in gastric cancer. Nature Communications, 2014, 5, 3830.	5.8	77
17	Genome and transcriptome sequencing of lung cancers reveal diverse mutational and splicing events. Genome Research, 2012, 22, 2315-2327.	2.4	177
18	Recurrent R-spondin fusions in colon cancer. Nature, 2012, 488, 660-664.	13.7	862

#	Article	IF	CITATIONS
19	The effects of hepatitis B virus integration into the genomes of hepatocellular carcinoma patients. Genome Research, 2012, 22, 593-601.	2.4	257
20	Deep RNA sequencing analysis of readthrough gene fusions in human prostate adenocarcinoma and reference samples. BMC Medical Genomics, 2011, 4, 11.	0.7	140
21	Genome, epigenome and RNA sequences of monozygotic twins discordant for multiple sclerosis. Nature, 2010, 464, 1351-1356.	13.7	463
22	Fast and SNP-tolerant detection of complex variants and splicing in short reads. Bioinformatics, 2010, 26, 873-881.	1.8	1,774
23	The Serine Protease Marapsin Is Expressed in Stratified Squamous Epithelia and Is Up-regulated in the Hyperproliferative Epidermis of Psoriasis and Regenerating Wounds. Journal of Biological Chemistry, 2009, 284, 218-228.	1.6	36
24	A highly annotated whole-genome sequence of a Korean individual. Nature, 2009, 460, 1011-1015.	13.7	295
25	Expression of protein elongation factor eEF1A2 predicts favorable outcome in breast cancer. Breast Cancer Research and Treatment, 2007, 102, 31-41.	1.1	57
26	GMAP: a genomic mapping and alignment program for mRNA and EST sequences. Bioinformatics, 2005, 21, 1859-1875.	1.8	2,121
27	Large-scale analysis of gene expression profiles. Briefings in Bioinformatics, 2002, 3, 7-17.	3.2	5
28	Analysing gene expression data from DNA microarrays to identify candidate genes. Journal of Pathology, 2001, 195, 53-65.	2.1	122