Monia Orciani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9337562/publications.pdf

Version: 2024-02-01

257450 315739 1,637 67 24 38 h-index citations g-index papers 69 69 69 2260 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Mesenchymal Stem Cells Exposed to Persistently High Glucocorticoid Levels Develop Insulin-Resistance and Altered Lipolysis: A Promising In Vitro Model to Study Cushing's Syndrome. Frontiers in Endocrinology, 2022, 13, 816229.	3.5	4
2	A Possible Cause for the Differential Expression of a Subset of miRNAs in Mesenchymal Stem Cells Derived from Myometrium and Leiomyoma. Genes, 2022, 13, 1106.	2.4	2
3	The efficacy of in vivo administration of Apremilast on mesenchymal stem cells derived from psoriatic patients. Inflammation Research, 2021, 70, 79-87.	4.0	5
4	The lessâ€known face of dupilumab: its role in mesenchymal stem cells by interleukinâ€13 modulation. British Journal of Dermatology, 2021, 185, 217-219.	1.5	2
5	Pro-inflammatory cytokines and microRNAs in male infertility. Molecular Biology Reports, 2021, 48, 5935-5942.	2.3	6
6	The Neuroprotective Effect of L-Carnitine against Glyceraldehyde-Induced Metabolic Impairment: Possible Implications in Alzheimer's Disease. Cells, 2021, 10, 2109.	4.1	9
7	From 2646 to 15: differentially regulated microRNAs between progenitors from normal myometrium and leiomyoma. American Journal of Obstetrics and Gynecology, 2020, 222, 596.e1-596.e9.	1.3	18
8	Mesenchymal stem cell profile in actinic keratosis and its modification after topical application of ingenol mebutate. Journal of the European Academy of Dermatology and Venereology, 2020, 34, e148-e149.	2.4	1
9	How the Pathological Microenvironment Affects the Behavior of Mesenchymal Stem Cells in the Idiopathic Pulmonary Fibrosis. International Journal of Molecular Sciences, 2020, 21, 8140.	4.1	10
10	Cushing Syndrome: The Role of MSCs in Wound Healing, Immunosuppression, Comorbidities, and Antioxidant Imbalance. Frontiers in Cell and Developmental Biology, 2019, 7, 227.	3.7	4
11	The senescent status of endothelial cells affects proliferation, inflammatory profile and SOX2 expression in bone marrow-derived mesenchymal stem cells. Experimental Gerontology, 2019, 120, 21-27.	2.8	12
12	Breast Implant Texturization Does Not Affect the Crosstalk Between MSC and ALCL Cells. Inflammation, 2019, 42, 721-730.	3.8	2
13	Mesenchymal Stem Cells from Nucleus Pulposus and Neural Differentiation Potential: a Continuous Challenge. Journal of Molecular Neuroscience, 2019, 67, 111-124.	2.3	13
14	Indirect co-cultures of healthy mesenchymal stem cells restore the physiological phenotypical profile of psoriatic mesenchymal stem cells. Clinical and Experimental Immunology, 2018, 193, 234-240.	2.6	24
15	Pituitary adenomas, stem cells, and cancer stem cells: what's new?. Journal of Endocrinological Investigation, 2018, 41, 745-753.	3.3	17
16	Mesenchymal Stem Cells from Cervix and Age: New Insights into CIN Regression Rate. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-12.	4.0	11
17	Characterization of tumor-derived mesenchymal stem cells potentially differentiating into cancer-associated fibroblasts in lung cancer. Clinical and Translational Oncology, 2018, 20, 1582-1591.	2.4	29
18	Chronic Inflammation May Enhance Leiomyoma Development by the Involvement of Progenitor Cells. Stem Cells International, 2018, 2018, 1-13.	2.5	40

#	Article	IF	CITATIONS
19	Pathogenetic Characteristics of Mesenchymal Stem Cells in Hidradenitis Suppurativa. JAMA Dermatology, 2018, 154, 1184.	4.1	18
20	Inflammation by Breast Implants and Adenocarcinoma: Not Always a Bad Company. Clinical Breast Cancer, 2017, 17, 286-292.	2.4	3
21	Effects of somatostatin and its analogues on progenitor mesenchymal cells isolated from human pituitary adenomas. Pituitary, 2017, 20, 251-260.	2.9	11
22	<scp>TNF</scp> â€i± inhibitors reduce the pathological Th ₁ â€"Th ₁₇ /Th ₂ imbalance in cutaneous mesenchymal stem cells of psoriasis patients. Experimental Dermatology, 2017, 26, 319-324.	2.9	40
23	T helper (Th)1, Th17 and Th2 imbalance in mesenchymal stem cells of adult patients with atopic dermatitis: at the origin of the problem. British Journal of Dermatology, 2017, 176, 1569-1576.	1.5	46
24	Role of mesenchymal stem cells in the pathogenesis of psoriasis: current perspectives. Psoriasis: Targets and Therapy, 2017, Volume 7, 73-85.	2.2	8
25	Biofabrication and Bone Tissue Regeneration: Cell Source, Approaches, and Challenges. Frontiers in Bioengineering and Biotechnology, 2017, 5, 17.	4.1	91
26	Evidence Supporting a Paracrine Effect of IGF-1/VEGF on Human Mesenchymal Stromal Cell Commitment. Cells Tissues Organs, 2016, 201, 333-341.	2.3	16
27	The effect of etanercept on vascular endothelial growth factor production by cutaneous mesenchymal stem cells from patients with psoriasis. Journal of International Medical Research, 2016, 44, 6-9.	1.0	18
28	New miRNAs network in human mesenchymal stem cells derived from skin and amniotic fluid. International Journal of Immunopathology and Pharmacology, 2016, 29, 523-528.	2.1	6
29	MSCs and inflammation: new insights into the potential association between ALCL and breast implants. Breast Cancer Research and Treatment, 2016, 156, 65-72.	2.5	20
30	Stem cell origin differently affects bone tissue engineering strategies. Frontiers in Physiology, 2015, 6, 266.	2.8	45
31	Isolation and characterization of progenitor mesenchymal cells in human pituitary tumors. Cancer Gene Therapy, 2015, 22, 9-16.	4.6	34
32	Comparative study between amniotic-fluid mesenchymal stem cells and retinal pigmented epithelium (RPE) stem cells ability to differentiate towards RPE cells. Cell and Tissue Research, 2015, 362, 21-31.	2.9	14
33	Characterization and profiling of immunomodulatory genes in resident mesenchymal stem cells reflect the Th1-Th17/Th2 imbalance of psoriasis. Archives of Dermatological Research, 2014, 306, 915-920.	1.9	68
34	Role of IGF1 and IGF1/VEGF on Human Mesenchymal Stromal Cells in Bone Healing: Two Sources and Two Fates. Tissue Engineering - Part A, 2014, 20, 2473-2482.	3.1	21
35	Expression of Neural Markers by Undifferentiated Mesenchymal-Like Stem Cells from Different Sources. Journal of Immunology Research, 2014, 2014, 1-16.	2.2	69
36	Bone-derived titanium coating improvesin vivoimplant osseointegration in an experimental animal model., 2014, 102, 303-310.		12

#	Article	IF	Citations
37	mRNAs and miRNAs profiling of mesenchymal stem cells derived from amniotic fluid and skin: the double face of the coin. Cell and Tissue Research, 2014, 355, 121-130.	2.9	31
38	Multipotential Aspects of Breast Periprosthetic Capsule Stem Cells., 2014,, 573-585.		0
39	The Response of Breast Cancer Cells to Mesenchymal Stem Cells. Plastic and Reconstructive Surgery, 2014, 134, 994e-996e.	1.4	7
40	Extensive Characterization of Stem Cells Derived from Skin. , 2014, , 335-342.		0
41	Skin-Derived Mesenchymal Stem Cells: Isolation, Culture, and Characterization. Methods in Molecular Biology, 2013, 989, 275-283.	0.9	28
42	Expression of Procollagen A1 Type I Induced by Two Different Dentine Bonding Systems in Human Pulp Fibroblasts. European Journal of Inflammation, 2013, 11, 559-564.	0.5	0
43	The Response of Breast Cancer Cells to Mesenchymal Stem Cells. Plastic and Reconstructive Surgery, 2013, 132, 899e-910e.	1.4	18
44	Alterations of ROS pathways in scleroderma begin at stem cell level. Journal of Biological Regulators and Homeostatic Agents, 2013, 27, 211-24.	0.7	10
45	Effect of biologic therapies targeting tumour necrosis factor- \hat{l}_{\pm} on cutaneous mesenchymal stem cells in psoriasis. British Journal of Dermatology, 2012, 167, 68-76.	1.5	59
46	Matrix Metalloproteinase-2 Expression Induced by Two Different Adhesive Systems on Human Pulp Fibroblasts. Journal of Endodontics, 2011, 37, 1663-1667.	3.1	13
47	The mesenchymal stem cell profile in psoriasis. British Journal of Dermatology, 2011, 165, 585-592.	1.5	66
48	VEGF and nitric oxide synthase immunoexpression in Down's syndrome amniotic fluid stem cells. European Journal of Clinical Investigation, 2011, 41, 23-29.	3.4	12
49	Ciprofloxacin-modified electrosynthesized hydrogel coatings to prevent titanium-implant-associated infections. Acta Biomaterialia, 2011, 7, 882-891.	8.3	93
50	Mesenchymal Stem Cells Neuronal Differentiation Ability: A Real Perspective for Nervous System Repair?. Current Stem Cell Research and Therapy, 2011, 6, 82-92.	1.3	96
51	Neurogenic potential of mesenchymal-like stem cells from human amniotic fluid: the influence of extracellular growth factors. Journal of Biological Regulators and Homeostatic Agents, 2011, 25, 115-30.	0.7	22
52	Effects of asbestiform antigorite on human alveolar epithelial A549 cells: A morphological and immunohistochemical study. Acta Histochemica, 2010, 112, 133-146.	1.8	20
53	Human skin-derived mesenchymal stem cells as a source of VEGF and nitric oxide. Archives of Dermatological Research, 2010, 302, 367-374.	1.9	31
54	Oxidative stress defense in human-skin-derived mesenchymal stem cells versus human keratinocytes: Different mechanisms of protection and cell selection. Free Radical Biology and Medicine, 2010, 49, 830-838.	2.9	60

#	Article	IF	Citations
55	Skinâ€derived mesenchymal stem cells (Sâ€MSCs) induce endothelial cell activation by paracrine mechanisms. Experimental Dermatology, 2010, 19, 848-850.	2.9	27
56	Functional Characterization of Calcium-Signaling Pathways of Human Skin-Derived Mesenchymal Stem Cells. Skin Pharmacology and Physiology, 2010, 23, 124-132.	2.5	39
57	Functional assay, expression of growth factors and proteins modulating bone-arrangement in human osteoblasts seeded on an anorganic bovine bone biomaterial., 2010, 20, 72-83.		33
58	The effects of disodium pamidronate on human polymorphonuclear leukocytes and platelets: An in vitro study. Cellular and Molecular Biology Letters, 2009, 14, 457-65.	7.0	5
59	Nitric oxide production during the osteogenic differentiation of human periodontal ligament mesenchymal stem cells. Acta Histochemica, 2009, 111, 15-24.	1.8	43
60	Insights into nuclear localization and dynamic association of CD38 in Raji and K562 cells. Journal of Cellular Biochemistry, 2008, 103, 1294-1308.	2.6	8
61	CD38 is constitutively expressed in the nucleus of human hematopoietic cells. Journal of Cellular Biochemistry, 2008, 105, 905-912.	2.6	46
62	Potential Role of Culture Mediums for Successful Isolation and Neuronal Differentiation of Amniotic Fluid Stem Cells. International Journal of Immunopathology and Pharmacology, 2008, 21, 595-602.	2.1	40
63	Expression of CD38 in Human Neuroblastoma Sh-SY5Y Cells. International Journal of Immunopathology and Pharmacology, 2008, 21, 97-105.	2.1	6
64	Exploiting CD38-mediated endocytosis for immunoliposome internalization. Anti-Cancer Drugs, 2008, 19, 599-605.	1.4	5
65	Adult mesenchymal stem cells for bone and cartilage engineering: effect of scaffold materials. European Journal of Histochemistry, 2008, 52, 169.	1.5	45
66	Characterization and phylogenetic epitope mapping of CD38 ADPR cyclase in the cynomolgus macaque. BMC Immunology, 2004, 5, 21.	2.2	5
67	Sphingolipid Microdomains Mediate CD38 Internalization: Topography of the Endocytosis. International Journal of Immunopathology and Pharmacology, 2004, 17, 293-300.	2.1	20