
Jiangyan Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/933677/publications.pdf Version: 2024-02-01

HANCYAN WANC

#	Article	IF	CITATIONS
1	Highly Efficient Photothermal Conversion and Water Transport during Solar Evaporation Enabled by Amorphous Hollow Multishelled Nanocomposites. Advanced Materials, 2022, 34, e2107400.	21.0	68
2	The development of hollow multishelled structure: from the innovation of synthetic method to the discovery of new characteristics. Science China Chemistry, 2022, 65, 7-19.	8.2	17
3	Progress and Perspectives of Hollow Multishelled Structures. Chinese Journal of Chemistry, 2022, 40, 1190-1203.	4.9	17
4	Highly Efficient Photothermal Conversion and Water Transport during Solar Evaporation Enabled by Amorphous Hollow Multishelled Nanocomposites (Adv. Mater. 7/2022). Advanced Materials, 2022, 34, .	21.0	1
5	Graphene coating on silicon anodes enabled by thermal surface modification for high-energy lithium-ion batteries. MRS Bulletin, 2022, 47, 127-133.	3.5	13
6	Accurately Localizing Multiple Nanoparticles in a Multishelled Matrix Through Shellâ€toâ€Core Evolution for Maximizing Energyâ€Storage Capability. Advanced Materials, 2022, 34, e2200206.	21.0	32
7	Coating conductive polypyrrole layers on multiple shells of hierarchical SnO2 spheres and their enhanced cycling stability as lithium-ion battery anode. Applied Surface Science, 2022, 586, 152836.	6.1	21
8	Decoding lithium batteries through advanced in situ characterization techniques. International Journal of Minerals, Metallurgy and Materials, 2022, 29, 965-989.	4.9	11
9	Small Structures Bring Big Things: Performance Control of Hollow Multishelled Structures. Small Structures, 2021, 2, 2000041.	12.0	42
10	Design and Construction of 3D Porous Na3V2(PO4)3/C as High Performance Cathode for Sodium Ion Batteries. Chemical Research in Chinese Universities, 2021, 37, 265-273.	2.6	25
11	Free-standing ultrathin lithium metal–graphene oxide host foils with controllable thickness for lithium batteries. Nature Energy, 2021, 6, 790-798.	39.5	198
12	Solar Water Splitting: Hollow Multishelled Structured SrTiO ₃ with La/Rh Coâ€Đoping for Enhanced Photocatalytic Water Splitting under Visible Light (Small 22/2021). Small, 2021, 17, 2170111.	10.0	2
13	Hollow Multishelled Structured SrTiO ₃ with La/Rh Coâ€Đoping for Enhanced Photocatalytic Water Splitting under Visible Light. Small, 2021, 17, e2005345.	10.0	38
14	The precise synthesis of twin-born Fe ₃ O ₄ /FeS/carbon nanosheets for high-rate lithium-ion batteries. Materials Chemistry Frontiers, 2021, 5, 4579-4588.	5.9	28
15	General Synthesis of Multipleâ€Cores@Multipleâ€6hells Hollow Composites and Their Application to Lithiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2021, 60, 25719-25722.	13.8	44
16	General Synthesis of Multipleâ€Cores@Multipleâ€6hells Hollow Composites and Their Application to Lithiumâ€Ion Batteries. Angewandte Chemie, 2021, 133, 25923-25926.	2.0	3
17	V ₂ O ₅ Textile Cathodes with High Capacity and Stability for Flexible Lithiumâ€lon Batteries. Advanced Materials, 2020, 32, e1906205.	21.0	107
18	Controllable Synthesis of Hollow Multishell Structured Co3O4 with Improved Rate Performance and Cyclic Stability for Supercapacitors. Chemical Research in Chinese Universities, 2020, 36, 68-73.	2.6	53

JIANGYAN WANG

#	Article	IF	CITATIONS
19	A binder-free high silicon content flexible anode for Li-ion batteries. Energy and Environmental Science, 2020, 13, 848-858.	30.8	245
20	Microclusters of Kinked Silicon Nanowires Synthesized by a Recyclable Iodide Process for Highâ€Performance Lithiumâ€Ion Battery Anodes. Advanced Energy Materials, 2020, 10, 2002108.	19.5	57
21	Electrolyte-Phobic Surface for the Next-Generation Nanostructured Battery Electrodes. Nano Letters, 2020, 20, 7455-7462.	9.1	25
22	Hollow multishelled structural NiO as a "shelter―for high-performance Li–S batteries. Materials Chemistry Frontiers, 2020, 4, 2971-2975.	5.9	14
23	Hollow Micro-/Nanostructure Reviving Lithium-sulfur Batteries. Chemical Research in Chinese Universities, 2020, 36, 313-319.	2.6	70
24	Dualâ€Defects Adjusted Crystalâ€Field Splitting of LaCo _{1â^'<i>x</i>} Ni _{<i>x</i>} O _{3â^'<i>δ</i>} Hollow Multishelled Structures for Efficient Oxygen Evolution. Angewandte Chemie - International Edition, 2020, 59, 19691-19695.	13.8	80
25	Incorporating the Nanoscale Encapsulation Concept from Liquid Electrolytes into Solid-State Lithium–Sulfur Batteries. Nano Letters, 2020, 20, 5496-5503.	9.1	30
26	Dualâ€Defects Adjusted Crystalâ€Field Splitting of LaCo _{1â~'<i>x</i>} Ni _{<i>x</i>} O _{3â~'<i>δ</i>} Hollow Multishelled Structures for Efficient Oxygen Evolution. Angewandte Chemie, 2020, 132, 19859-19863.	2.0	5
27	Hollow multishelled structures revive high energy density batteries. Nanoscale Horizons, 2020, 5, 1287-1292.	8.0	31
28	Cryo-EM Reveals the Structure and Chemistry of the Silicon Solid-Electrolyte Interphase. CheM, 2020, 6, 331-334.	11.7	2
29	A novel battery scheme: Coupling nanostructured phosphorus anodes with lithium sulfide cathodes. Nano Research, 2020, 13, 1383-1388.	10.4	13
30	Hollow multishell structures exercise temporal–spatial ordering and dynamic smart behaviour. Nature Reviews Chemistry, 2020, 4, 159-168.	30.2	147
31	Membraneâ€Free Zn/MnO ₂ Flow Battery for Largeâ€Scale Energy Storage. Advanced Energy Materials, 2020, 10, 1902085.	19.5	111
32	Electrolytes for microsized silicon. Nature Energy, 2020, 5, 361-362.	39.5	19
33	Scalable synthesis of nanoporous silicon microparticles for highly cyclable lithium-ion batteries. Nano Research, 2020, 13, 1558-1563.	10.4	65
34	Improving Lithium Metal Composite Anodes with Seeding and Pillaring Effects of Silicon Nanoparticles. ACS Nano, 2020, 14, 4601-4608.	14.6	61
35	Efficient sequential harvesting of solar light by heterogeneous hollow shells with hierarchical pores. National Science Review, 2020, 7, 1638-1646.	9.5	57
36	Constructing SrTiO ₃ –TiO ₂ Heterogeneous Hollow Multiâ€shelled Structures for Enhanced Solar Water Splitting. Angewandte Chemie, 2019, 131, 1436-1440.	2.0	42

JIANGYAN WANG

#	Article	IF	CITATIONS
37	Improving cyclability of Li metal batteries at elevated temperatures and its origin revealed by cryo-electron microscopy. Nature Energy, 2019, 4, 664-670.	39.5	336
38	Sequential Templating Approach: Sequential Templating Approach: A Groundbreaking Strategy to Create Hollow Multishelled Structures (Adv. Mater. 38/2019). Advanced Materials, 2019, 31, 1970274.	21.0	2
39	Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries. Nature Nanotechnology, 2019, 14, 705-711.	31.5	773
40	Temperatureâ€Dependent Nucleation and Growth of Dendriteâ€Free Lithium Metal Anodes. Angewandte Chemie - International Edition, 2019, 58, 11364-11368.	13.8	182
41	Hollow Multishelled Structures for Promising Applications: Understanding the Structure–Performance Correlation. Accounts of Chemical Research, 2019, 52, 2169-2178.	15.6	160
42	Temperatureâ€Dependent Nucleation and Growth of Dendriteâ€Free Lithium Metal Anodes. Angewandte Chemie, 2019, 131, 11486-11490.	2.0	72
43	Hollow Multiâ€Shelled Structural TiO _{2â^'<i>x</i>} with Multiple Spatial Confinement for Longâ€Life Lithium–Sulfur Batteries. Angewandte Chemie - International Edition, 2019, 58, 9078-9082.	13.8	149
44	Hollow Multiâ€5helled Structural TiO _{2â^'<i>x</i>} with Multiple Spatial Confinement for Longâ€Life Lithium–Sulfur Batteries. Angewandte Chemie, 2019, 131, 9176-9180.	2.0	45
45	Uniform High Ionic Conducting Lithium Sulfide Protection Layer for Stable Lithium Metal Anode. Advanced Energy Materials, 2019, 9, 1900858.	19.5	333
46	Hollow Multiâ€5helled Structure with Metal–Organicâ€Frameworkâ€Derived Coatings for Enhanced Lithium Storage. Angewandte Chemie - International Edition, 2019, 58, 5266-5271.	13.8	102
47	Hollow Multi‧helled Structure with Metal–Organicâ€Frameworkâ€Đerived Coatings for Enhanced Lithium Storage. Angewandte Chemie, 2019, 131, 5320-5325.	2.0	15
48	Constructing SrTiO ₃ –TiO ₂ Heterogeneous Hollow Multiâ€shelled Structures for Enhanced Solar Water Splitting. Angewandte Chemie - International Edition, 2019, 58, 1422-1426.	13.8	212
49	Sequential Templating Approach: A Groundbreaking Strategy to Create Hollow Multishelled Structures. Advanced Materials, 2019, 31, e1802874.	21.0	153
50	Design of Hollow Nanostructures for Energy Storage, Conversion and Production. Advanced Materials, 2019, 31, e1801993.	21.0	313
51	Electrocatalytic Nâ€Doped Graphitic Nanofiber – Metal/Metal Oxide Nanoparticle Composites. Small, 2018, 14, e1703459.	10.0	61
52	A manganese–hydrogen battery with potential for grid-scale energy storage. Nature Energy, 2018, 3, 428-435.	39.5	325
53	Construction of Multishelled Binary Metal Oxides via Coabsorption of Positive and Negative Ions as a Superior Cathode for Sodium-Ion Batteries. Journal of the American Chemical Society, 2018, 140, 17114-17119.	13.7	96
54	Shell-Protective Secondary Silicon Nanostructures as Pressure-Resistant High-Volumetric-Capacity Anodes for Lithium-Ion Batteries. Nano Letters, 2018, 18, 7060-7065.	9.1	121

JIANGYAN WANG

#	Article	IF	CITATIONS
55	Engineering stable interfaces for three-dimensional lithium metal anodes. Science Advances, 2018, 4, eaat5168.	10.3	153
56	Multi-shelled hollow micro-/nanostructures: promising platforms for lithium-ion batteries. Materials Chemistry Frontiers, 2017, 1, 414-430.	5.9	189
57	Air-stable and freestanding lithium alloy/graphene foil as an alternative to lithium metal anodes. Nature Nanotechnology, 2017, 12, 993-999.	31.5	376
58	Synthesis of multi-shelled MnO ₂ hollow microspheres via an anion-adsorption process of hydrothermal intensification. Inorganic Chemistry Frontiers, 2016, 3, 1065-1070.	6.0	60
59	Multi-shelled metal oxides prepared via an anion-adsorption mechanism for lithium-ion batteries. Nature Energy, 2016, 1, .	39.5	352
60	Engineering of multi-shelled SnO ₂ hollow microspheres for highly stable lithium-ion batteries. Journal of Materials Chemistry A, 2016, 4, 17673-17677.	10.3	127
61	Multi-shelled LiMn ₂ O ₄ hollow microspheres as superior cathode materials for lithium-ion batteries. Inorganic Chemistry Frontiers, 2016, 3, 365-369.	6.0	84
62	Multi-shelled hollow micro-/nanostructures. Chemical Society Reviews, 2015, 44, 6749-6773.	38.1	603
63	pHâ€Regulated Synthesis of Multiâ€5helled Manganese Oxide Hollow Microspheres as Supercapacitor Electrodes Using Carbonaceous Microspheres as Templates. Advanced Science, 2014, 1, 1400011.	11.2	154
64	Quintupleâ€Shelled SnO ₂ Hollow Microspheres with Superior Light Scattering for Highâ€Performance Dyeâ€Sensitized Solar Cells. Advanced Materials, 2014, 26, 905-909.	21.0	283
65	Multishelled TiO ₂ Hollow Microspheres as Anodes with Superior Reversible Capacity for Lithium Ion Batteries. Nano Letters, 2014, 14, 6679-6684.	9.1	406
66	Accurate Control of Multishelled Co ₃ O ₄ Hollow Microspheres as Highâ€Performance Anode Materials in Lithiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2013, 52, 6417-6420.	13.8	650
67	Accurate Control of Multishelled Co ₃ O ₄ Hollow Microspheres as Highâ€Performance Anode Materials in Lithiumâ€Ion Batteries. Angewandte Chemie, 2013, 125, 6545-6548.	2.0	290