Krisztina LÃ_iszlÃ³

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9335676/publications.pdf Version: 2024-02-01

Κριςστινία Ι Διςσι Δ3

#	Article	IF	CITATIONS
1	WO3 photocatalysts: Influence of structure and composition. Journal of Catalysis, 2012, 294, 119-127.	6.2	299
2	Effect of activation on the surface chemistry of carbons from polymer precursors. Carbon, 2001, 39, 1217-1228.	10.3	227
3	Comparative XRD, Raman, and TEM Study on Graphitization of PBO-Derived Carbon Fibers. Journal of Physical Chemistry C, 2012, 116, 257-268.	3.1	183
4	Surface modification of graphene and graphite by nitrogen plasma: Determination of chemical state alterations and assignments by quantitative X-ray photoelectron spectroscopy. Carbon, 2015, 84, 185-196.	10.3	160
5	Surface characterization of polyethyleneterephthalate (PET) based activated carbon and the effect of pH on its adsorption capacity from aqueous phenol and 2,3,4-trichlorophenol solutions. Carbon, 2001, 39, 1945-1953.	10.3	146
6	Influence of drying on the morphology of resorcinol–formaldehyde-based carbon gels. Microporous and Mesoporous Materials, 2005, 86, 124-133.	4.4	144
7	Driving Forces of Conformational Changes in Single-Layer Graphene Oxide. ACS Nano, 2012, 6, 3967-3973.	14.6	107
8	Heterogeneity of Polymer-Based Active Carbons in Adsorption of Aqueous Solutions of Phenol and 2,3,4-Trichlorophenol. Langmuir, 2003, 19, 5287-5294.	3.5	93
9	Adsorption from aqueous phenol and aniline solutions on activated carbons with different surface chemistry. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 265, 32-39.	4.7	90
10	Comparative adsorption study on carbons from polymer precursors. Carbon, 2000, 38, 1965-1976.	10.3	89
11	pH-driven physicochemical conformational changes of single-layer graphene oxide. Chemical Communications, 2011, 47, 9645.	4.1	83
12	Control of pore formation in macroporous polymers synthesized by single-step γ-radiation-initiated polymerization and cross-linking. Polymer, 2005, 46, 2862-2871.	3.8	82
13	Thermally Responsive Amphiphilic Conetworks and Gels Based on Poly(<i>N</i> -isopropylacrylamide) and Polyisobutylene. Macromolecules, 2013, 46, 5337-5344.	4.8	80
14	Characterization of activated carbons from waste materials by adsorption from aqueous solutions. Carbon, 1997, 35, 593-598.	10.3	72
15	Comparative Study of Active Carbons from Different Precursors. Langmuir, 1997, 13, 6502-6509.	3.5	61
16	Thermal analysis of the improved Hummers' synthesis of graphene oxide. Journal of Thermal Analysis and Calorimetry, 2018, 131, 2267-2272.	3.6	60
17	Phase Transition in Poly(N-isopropylacrylamide) Hydrogels Induced by Phenols. Macromolecules, 2003, 36, 7771-7776.	4.8	56
18	Heterogeneity of activated carbons with different surface chemistry in adsorption of phenol from aqueous solutions. Applied Surface Science, 2006, 252, 5752-5762.	6.1	55

#	Article	IF	CITATIONS
19	Characterization and adsorption properties of polymer-based microporous carbons with different surface chemistry. Microporous and Mesoporous Materials, 2005, 80, 205-211.	4.4	54
20	Redox―and pHâ€Responsive Cysteamineâ€Modified Poly(aspartic acid) Showing a Reversible Sol–Gel Transition. Macromolecular Bioscience, 2013, 13, 633-640.	4.1	53
21	Photocatalytic properties of TiO2@polymer and TiO2@carbon aerogel composites prepared by atomic layer deposition. Carbon, 2019, 147, 476-482.	10.3	51
22	Water in Contact with Magnetite Nanoparticles, as Seen from Experiments and Computer Simulations. Langmuir, 2009, 25, 13007-13014.	3.5	50
23	Sulfurâ€Doped Carbon Aerogel as a Metalâ€Free Oxygen Reduction Catalyst. ChemCatChem, 2015, 7, 2924-2931.	3.7	50
24	S-doped carbon aerogels/GO composites as oxygen reduction catalysts. Journal of Energy Chemistry, 2016, 25, 236-245.	12.9	50
25	Surface chemistry of nanoporous carbon and the effect of pH on adsorption from aqueous phenol and 2,3,4-trichlorophenol solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 230, 13-22.	4.7	48
26	pH-dependent adsorption and desorption of phenol and aniline on basic activated carbon. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 306, 95-101.	4.7	48
27	Supermacroporous chemically cross-linked poly(aspartic acid) hydrogels. Acta Biomaterialia, 2015, 22, 32-38.	8.3	48
28	Water vapour adsorption in highly porous carbons as seen by small and wide angle X-ray scattering. Carbon, 2010, 48, 1038-1048.	10.3	44
29	Photocatalytic WO ₃ /TiO ₂ nanowires: WO ₃ polymorphs influencing the atomic layer deposition of TiO ₂ . RSC Advances, 2016, 6, 95369-95377.	3.6	44
30	Immobilization engineering – How to design advanced sol–gel systems for biocatalysis?. Green Chemistry, 2017, 19, 3927-3937.	9.0	44
31	Comparison of thermally and chemically reduced graphene oxides by thermal analysis and Raman spectroscopy. Journal of Thermal Analysis and Calorimetry, 2020, 142, 331-337.	3.6	44
32	Porous carbon from polymer waste materials. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 151, 311-320.	4.7	43
33	A new alumina-supported, not pyrophoric Raney-type Ni-catalyst. Applied Catalysis A: General, 2000, 190, 73-86.	4.3	41
34	Catalytic performance of carbon nanotubes in H2O2 decomposition: Experimental and quantum chemical study. Journal of Colloid and Interface Science, 2015, 437, 283-290.	9.4	41
35	Enthalpy of displacement of binary liquid mixtures on solid surfaces part I. Analysis of u-shaped isotherms. Colloids and Surfaces, 1986, 19, 47-66.	0.9	39
36	High-Sensitivity Isothermal and Scanning Microcalorimetry in PNIPA Hydrogels around the Volume Phase Transition. Macromolecules, 2004, 37, 10067-10072.	4.8	39

#	Article	IF	CITATIONS
37	Nitrogen doped mesoporous carbon aerogels and implications for electrocatalytic oxygen reduction reactions. Microporous and Mesoporous Materials, 2016, 230, 135-144.	4.4	39
38	Morphological Investigation of Chemically Treated Poly(ethylene terephthalate)-Based Activated Carbons. Langmuir, 2004, 20, 1321-1328.	3.5	37
39	Hydrothermal Synthesis and Gas Sensing of Monoclinic MoO3 Nanosheets. Nanomaterials, 2020, 10, 891.	4.1	37
40	Photocatalytic C60-amorphous TiO2 composites prepared by atomic layer deposition. Applied Surface Science, 2017, 419, 497-502.	6.1	36
41	Static and dynamic studies of hydrogen adsorption on nanoporous carbon gels. International Journal of Hydrogen Energy, 2019, 44, 18169-18178.	7.1	36
42	Morphological and chemical features of nano and macroscale carbons affecting hydrogen peroxide decomposition in aqueous media. Journal of Colloid and Interface Science, 2011, 361, 129-136.	9.4	35
43	Influence of Surface Chemistry on the SAXS Response of Polymer-Based Activated Carbons. Langmuir, 2005, 21, 8443-8451.	3.5	33
44	Graphitization of highly porous carbons derived from poly(p-phenylene benzobisoxazole). Carbon, 2012, 50, 2929-2940.	10.3	33
45	Competitive adsorption of phenol and 3-chlorophenol on purified MWCNTs. Journal of Colloid and Interface Science, 2012, 387, 244-249.	9.4	32
46	Preparation of graphene oxide/semiconductor oxide composites by using atomic layer deposition. Applied Surface Science, 2018, 453, 245-251.	6.1	32
47	Morphology and adsorption properties of chemically modified MWCNT probed by nitrogen, n-propane and water vapor. Carbon, 2012, 50, 577-585.	10.3	31
48	Chitosan-nanosilica hybrid materials: Preparation and properties. Applied Surface Science, 2014, 320, 563-569.	6.1	31
49	Microphase Structure of Poly(<i>N</i> -isopropylacrylamide) Hydrogels As Seen by Small- and Wide-Angle X-ray Scattering and Pulsed Field Gradient NMR. Langmuir, 2010, 26, 4415-4420.	3.5	30
50	A feasible linker transformation strategy towards the formation of Cu ₂ O nanoparticles for immobilization in hierarchical CuBTC for adsorption desulfurization. Journal of Materials Chemistry A, 2020, 8, 8678-8683.	10.3	30
51	Enthalpy of displacement of binary liquid mixtures on solid surfaces part II. Analysis of S-shaped excess isotherms. Colloids and Surfaces, 1987, 23, 41-55.	0.9	29
52	Fractal approach of activated carbons from solid waste materials. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1998, 138, 29-37.	4.7	29
53	Role of water molecules in the decomposition of HKUST-1: Evidence from adsorption, thermoanalytical, X-ray and neutron scattering measurements. Applied Surface Science, 2019, 480, 138-147.	6.1	28
54	Heterogeneity of activated carbons in adsorption of aniline from aqueous solutions. Applied Surface Science, 2007, 253, 8762-8771.	6.1	27

#	Article	IF	CITATIONS
55	Surface-associated metal catalyst enhances the sorption of perfluorooctanoic acid to multi-walled carbon nanotubes. Journal of Colloid and Interface Science, 2012, 377, 342-346.	9.4	27
56	Enthalpy of displacement of binary liquid mixtures on solid surfaces part III. Determination of the adsorption capacity from calorimetric and adsorption data. Colloids and Surfaces, 1987, 23, 57-68.	0.9	26
57	Synergism of nitrogen and reduced graphene in the electrocatalytic behavior of resorcinol - Formaldehyde based carbon aerogels. Carbon, 2018, 139, 872-879.	10.3	26
58	Deswelling kinetics of PNIPA gels. Soft Matter, 2010, 6, 4335.	2.7	25
59	Natural rubber/graphene oxide nanocomposites via melt and latex compounding: Comparison at very low graphene oxide content. Journal of Reinforced Plastics and Composites, 2017, 36, 808-817.	3.1	25
60	In situ evolved gas analysis assisted thermogravimetric (TG-FTIR and TG/DTA–MS) studies on non-activated copper benzene-1,3,5-tricarboxylate. Thermochimica Acta, 2017, 647, 62-69.	2.7	25
61	Effect of heat treatment on synthetic carbon precursors. Carbon, 2003, 41, 1205-1214.	10.3	23
62	Poly(aspartic acid) with adjustable pH-dependent solubility. Acta Biomaterialia, 2017, 49, 486-494.	8.3	23
63	Thermal degradation of crab shell biomass, a nitrogen-containing carbon precursor. Journal of Thermal Analysis and Calorimetry, 2020, 142, 301-308.	3.6	23
64	Distribution of Phenols in Thermoresponsive Hydrogels. Macromolecules, 2007, 40, 2141-2147.	4.8	22
65	Cu-doped resorcinol–formaldehyde (RF) polymer and carbon aerogels. Journal of Colloid and Interface Science, 2009, 337, 513-522.	9.4	21
66	<i>In situ</i> synthesis of molecularly imprinted nanoparticles in porous support membranes using highâ€viscosity polymerization solvents. Journal of Molecular Recognition, 2012, 25, 320-329.	2.1	21
67	Drying of resorcinol–formaldehyde gels with CO2 medium. Microporous and Mesoporous Materials, 2012, 148, 34-42.	4.4	21
68	Thermal transformation of bioactive caffeic acid on fumed silica seen by UV–Vis spectroscopy, thermogravimetric analysis, temperature programmed desorption mass spectrometry and quantum chemical methods. Journal of Colloid and Interface Science, 2016, 470, 132-141.	9.4	21
69	Effect of graphene-derivatives on the responsivity of PNIPAM-based thermosensitive nanocomposites – A review. European Polymer Journal, 2019, 116, 106-116.	5.4	21
70	Graphene Oxide Protected Copper Benzene-1,3,5-Tricarboxylate for Clean Energy Gas Adsorption. Nanomaterials, 2020, 10, 1182.	4.1	21
71	Aggregation of particulate fillers: factors, determination, properties. Macromolecular Symposia, 2003, 194, 111-124.	0.7	20
72	Complementary X-ray scattering and high resolution imaging of nanostructure development in thermally treated PBO fibers. Carbon, 2011, 49, 2960-2970.	10.3	20

#	Article	IF	CITATIONS
73	Molecularly imprinted microspheres prepared by precipitation polymerization at high monomer concentrations. Molecular Imprinting, 2014, 2, 1-17.	1.8	20
74	Host–Guest Interactions in Poly(<i>N</i> -isopropylacrylamide) Hydrogel Seen by One- and Two-Dimensional ¹ H CRAMPS Solid-State NMR Spectroscopy. Macromolecules, 2013, 46, 3118-3124.	4.8	18
75	Molybdenum doped carbon aerogels with catalytic potential. Carbon, 2014, 66, 210-218.	10.3	18
76	Effect of pH in the Hydrothermal Preparation of Bi2WO6 Nanostructures. Materials, 2019, 12, 1728.	2.9	18
77	Effect of tetramethylammonium hydroxide on cotton cellulose compared to sodium hydroxide. Macromolecular Chemistry and Physics, 2000, 201, 2550-2556.	2.2	17
78	Honeycomb carbon monoliths from Pinus sylvestris. Carbon, 2005, 43, 2402-2405.	10.3	17
79	Chromatographic behavior of silica–polymer composite molecularly imprinted materials. Journal of Chromatography A, 2005, 1100, 60-67.	3.7	17
80	Surface chemistry and contrast-modified SAXS in polymer-based activated carbons. Carbon, 2006, 44, 2437-2444.	10.3	17
81	Interaction of phenol and dopamine with commercial MWCNTs. Journal of Colloid and Interface Science, 2011, 364, 469-475.	9.4	17
82	Preparation and characterization of a nitrogen-doped mesoporous carbon aerogel and its polymer precursor. Journal of Thermal Analysis and Calorimetry, 2018, 134, 933-939.	3.6	17
83	Photocatalytic and Gas Sensitive Multiwalled Carbon Nanotube/TiO2-ZnO and ZnO-TiO2 Composites Prepared by Atomic Layer Deposition. Nanomaterials, 2020, 10, 252.	4.1	17
84	Structure-Independent Proton Transport in Cerium(III) Phosphate Nanowires. ACS Applied Materials & Interfaces, 2015, 7, 9947-9956.	8.0	16
85	Effect of mild alkali/ultrasound treatment on flax and hemp fibres: the different responses of the two substrates. Cellulose, 2016, 23, 2117-2128.	4.9	16
86	Reduction and covalent modification of grapheneâ€oxide by nitrogen in glow discharge plasma. Surface and Interface Analysis, 2018, 50, 1207-1212.	1.8	16
87	Copper benzene-1,3,5-tricarboxylate (HKUST-1) – graphene oxide pellets for methane adsorption. Microporous and Mesoporous Materials, 2021, 316, 110948.	4.4	16
88	Pressure resistance of copper benzene-1,3,5-tricarboxylate – carbon aerogel composites. Applied Surface Science, 2018, 434, 1300-1310.	6.1	15
89	Influence of a Crown Ether Comonomer on the Temperature-Induced Phase Transition of Poly(N-isopropylacrylamide) Hydrogels. Journal of Physical Chemistry B, 2008, 112, 1065-1070.	2.6	14
90	Effect of pH in the hydrothermal preparation of monoclinic tungsten oxide. Journal of Solid State Chemistry, 2020, 281, 121044.	2.9	14

#	Article	IF	CITATIONS
91	Water vapour adsorption and contrast-modified SAXS inÂmicroporous polymer-based carbons of different surface chemistry. Adsorption, 2008, 14, 447-455.	3.0	13
92	Hydroconversion of acetic acid over carbon aerogel supported molybdenum catalyst. Microporous and Mesoporous Materials, 2014, 190, 46-53.	4.4	13
93	Host–guest interactions in poly(N-isopropylacrylamide) gel. Journal of Thermal Analysis and Calorimetry, 2015, 120, 1273-1281.	3.6	13
94	Distorted Graphene Sheet Structure-Derived Latent Nanoporosity. Langmuir, 2016, 32, 5617-5622.	3.5	13
95	Fast dissolving nanofibrous matrices prepared by electrospinning of polyaspartamides. European Polymer Journal, 2020, 130, 109624.	5.4	13
96	Molecular-Sieve Honeycomb for Air Separation fromPicea abies. Helvetica Chimica Acta, 2004, 87, 1888-1893.	1.6	12
97	Preparation of terbutylazine imprinted polymer microspheres using viscous polymerization solvents. Journal of Separation Science, 2009, 32, 3347-3358.	2.5	12
98	The effect of ionic environment on the TG response of phenol loaded PET-based porous carbons. Journal of Thermal Analysis and Calorimetry, 2009, 97, 273-280.	3.6	12
99	Copper-containing resorcinol–formaldehyde networks. Microporous and Mesoporous Materials, 2009, 126, 213-221.	4.4	12
100	Interactions in aromatic probe molecule loaded poly(N-isopropylacrylamide) hydrogels and implications for drug delivery. European Polymer Journal, 2015, 68, 657-664.	5.4	12
101	Small angle neutron scattering study of globular proteins confined in porous carbons. Carbon, 2016, 106, 142-151.	10.3	12
102	Effect of side groups on the properties of cationic polyaspartamides. European Polymer Journal, 2017, 93, 805-814.	5.4	12
103	Enhancing substrate utilization and power production of a microbial fuel cell with nitrogen-doped carbon aerogel as cathode catalyst. Biotechnology Letters, 2017, 39, 993-999.	2.2	12
104	Search for the Origin of Discrepancies in Osmotic Measurements of the PNIPAM - Water System. Periodica Polytechnica: Chemical Engineering, 2017, 61, 39.	1.1	12
105	Effect of achiral support on the resolution of tetramisole by supercritical fluid extraction. Tetrahedron: Asymmetry, 2002, 13, 1429-1434.	1.8	11
106	Interaction of phenols with thermo-responsive hydrogels. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 319, 159-164.	4.7	11
107	Phenol–polymer proximity in a thermoresponsive gel determined by solid-state ¹ H– ¹ H CRAMPS NMR spectroscopy. Soft Matter, 2010, 6, 247-249.	2.7	11
108	In situ SAXS investigation of structural changes in soft resorcinol–formaldehyde polymer gels during CO2-drying. Journal of Supercritical Fluids, 2013, 75, 112-119.	3.2	11

#	Article	IF	CITATIONS
109	Influence of the Support Crystal Structure of WO3/Au Catalysts in CO Oxidation. Catalysis Letters, 2014, 144, 831-836.	2.6	11
110	Diffusion of molecular hydrogen in carbon aerogel. Carbon, 2016, 98, 572-581.	10.3	11
111	Double probe approach to protein adsorption on porous carbon surfaces. Carbon, 2017, 112, 103-110.	10.3	11
112	Ecotoxicity Assessment of Graphene Oxide by Daphnia magna through a Multimarker Approach from the Molecular to the Physiological Level including Behavioral Changes. Nanomaterials, 2020, 10, 2048.	4.1	11
113	Molar surface energy and Eötvös's law. Colloid and Polymer Science, 2007, 285, 1505-1508.	2.1	10
114	Host–Guest Interactions in Poly(<i>N</i> -isopropylacrylamide) Hydrogels. Chemistry Letters, 2012, 41, 1055-1056.	1.3	10
115	Nitrogen doped carbon aerogel composites with TiO ₂ and ZnO prepared by atomic layer deposition. Journal of Materials Chemistry C, 2020, 8, 6891-6899.	5.5	10
116	Fluorescence probing of binding sites on graphene oxide nanosheets with Oxazine 1 dye. Applied Surface Science, 2021, 541, 148451.	6.1	10
117	Interaction of resorcinol-formaldehyde carbon aerogels with water: A comprehensive NMR study. Carbon, 2022, 189, 57-70.	10.3	10
118	Simultaneous adsorption of toluene and water vapor on a high surface area carbon. Carbon, 2012, 50, 4155-4162.	10.3	9
119	TiO2-doped resorcinol–formaldehyde (RF) polymer and carbon gels with photocatalytic activity. Nanomaterials and the Environment, 2013, 1, .	0.3	9
120	Solid-Phase "Self-Hydrolysis―of [Zn(NH3)4MoO4@2H2O] Involving Enclathrated Water—An Easy Route to a Layered Basic Ammonium Zinc Molybdate Coordination Polymer. Molecules, 2021, 26, 4022.	3.8	9
121	Kinetic and equilibrium separation of Co and Co2 by impregnated spherical carbons. Microporous and Mesoporous Materials, 2009, 120, 76-83.	4.4	8
122	N-containing carbons from styrene–divinylbenzene copolymer by urea treatment. Applied Surface Science, 2012, 258, 2410-2415.	6.1	8
123	Water Adsorption by Carbons. Hydrophobicity and Hydrophilicity. , 2012, , 147-171.		8
124	Graphene derivatives in responsive hydrogels: Effect of concentration and surface chemistry. European Polymer Journal, 2017, 93, 717-725.	5.4	8
125	Physicochemical Characterization and Drug Release Properties of Methyl-Substituted Silica Xerogels Made Using Sol–Gel Process. International Journal of Molecular Sciences, 2021, 22, 9197.	4.1	8
126	Nonequilibrium Aspects of Adsorption from a Dilute Aqueous Solution of 1-Propanol onto Activated Carbon: Interrelation between the Sorbent "Concentration―Effect and Metastability. Langmuir, 1999, 15, 1307-1312.	3.5	7

#	Article	IF	CITATIONS
127	Nanostructure evolution in heat-treated porous carbons derived from PBO polymer. Journal of Alloys and Compounds, 2012, 536, S464-S468.	5.5	7
128	Structural changes in resorcinol formaldehyde aerogel seen by NMR. Microporous and Mesoporous Materials, 2021, 317, 110988.	4.4	7
129	X-ray Photon Correlation Spectroscopy of Dynamics in Thermosensitive Gels. Macromolecular Symposia, 2007, 256, 73-79.	0.7	6
130	Influence of silicon doping on the nanomorphology and surface chemistry of a wood-based carbon molecular sieve. Microporous and Mesoporous Materials, 2007, 100, 103-110.	4.4	6
131	Incompatible Liquids in Confined Conditions. Journal of Physical Chemistry C, 2014, 118, 23723-23727.	3.1	6
132	Photocatalytically Active Amorphous and Crystalline TiO2 Prepared by Atomic Layer Deposition. Periodica Polytechnica: Chemical Engineering, 2019, 63, 378-387.	1.1	6
133	Room temperature ionic liquids to tailor resorcinol – Formaldehyde polymer gels. Microporous and Mesoporous Materials, 2020, 294, 109888.	4.4	6
134	Adsorption from aqueous phenol and 2,3,4-trichlorophenol solutions on nanoporous carbon prepared from poly(ethylene terephthalate). , 2001, , 5-12.		6
135	Crossâ€Linked Enzymeâ€Adhered Nanoparticles (CLEANs) for Continuousâ€Flow Bioproduction. ChemSusChem, 2022, 15, .	6.8	6
136	The key role of microtexture in the graphitisation of PBO fibre chars as seen by X-ray scattering and transmission electron microscopy. Carbon, 2010, 48, 3968-3970.	10.3	5
137	Effect of molybdenum on the structure formation of resorcinol–formaldehyde hydrogel studied by coherent x-ray scattering. Journal of Chemical Physics, 2012, 136, 234907.	3.0	5
138	Novel synthesis route of metal doped resorcinol–formaldehyde polymer xerogels with tuned porosity. Microporous and Mesoporous Materials, 2014, 185, 66-71.	4.4	5
139	Correlation between structure and responsivity in PNIPAM based nanocomposites: A combined nano- and macroscale view. European Polymer Journal, 2018, 99, 180-188.	5.4	5
140	Influence of Graphene Oxide Incorporation on Resorcinol-Formaldehyde Polymer and Carbon Aerogels. Periodica Polytechnica: Chemical Engineering, 2018, 62, .	1.1	5
141	Water-Ionic Liquid Binary Mixture Tailored Resorcinol-Formaldehyde Carbon Aerogels without Added Catalyst. Materials, 2019, 12, 4208.	2.9	5
142	Electric and Photocatalytic Properties of Graphene Oxide Depending on the Degree of Its Reduction. Nanomaterials, 2020, 10, 2313.	4.1	5
143	Side group ratio as a novel means to tune the hydrolytic degradation of thiolated and disulfide cross-linked polyaspartamides. Polymer Degradation and Stability, 2021, 188, 109577.	5.8	5
144	Individual Variables in Capillarity. Colloid and Polymer Science, 2004, 282, 243-249.	2.1	4

#	Article	IF	CITATIONS
145	Characteristic adsorption functions and the surface structure of solid adsorbents. Journal of Colloid and Interface Science, 2005, 286, 425-432.	9.4	4
146	Low pressure RF plasma modification of the surface of three different nano-carbon materials. Open Chemistry, 2015, 13, .	1.9	4
147	Heterogeneity of multiwalled carbon nanotubes based on adsorption of simple aromatic compounds from aqueous solutions. Adsorption, 2014, 20, 789-800.	3.0	4
148	Long-Term Aging of Concentrated Aqueous Graphene Oxide Suspensions Seen by Rheology and Raman Spectroscopy. Nanomaterials, 2022, 12, 916.	4.1	4
149	Nano-ZrO2@C, Nano-(ZrC, ZrO2)@C and Nano-ZrC@C Composites Prepared by Plasma-Assisted Carbonization of Zr-Loaded Iminodiacetate-Functionalized Styrene-Divinylbenzene Copolymers. Inorganics, 2022, 10, 77.	2.7	4
150	Connection Between Surface Properties, Specific Surface Area and Component Distribution of Binary Mixtures of Corn Starch and Metronidazole. Starch/Staerke, 2007, 59, 510-512.	2.1	3
151	Wetting and non-wetting fluids in surface-functionalised activated carbons. Colloid and Polymer Science, 2008, 286, 59-65.	2.1	3
152	Biomass Related Highly Porous Metal Free Carbon for Gas Storage and Electrocatalytic Applications. Materials, 2021, 14, 3488.	2.9	3
153	Investigation of high-performance liquid chromatographic packings by liquid mixture adsorption. Journal of Chromatography A, 1987, 406, 311-316.	3.7	2
154	Interaction of non-ionic hydrogels with weak aromatic acids. Macromolecular Symposia, 2003, 200, 181-190.	0.7	2
155	Kinetics of Jammed Systems: PNIPA Gels. Macromolecular Symposia, 2011, 306-307, 27-32.	0.7	2
156	Non-covalent interactions between poly(N-isopropylacrylamide) and small aromatic probe molecules studied by NMR spectroscopy. European Polymer Journal, 2017, 93, 750-760.	5.4	2
157	Palladium as a Catalyst in a Polycondensed Matrix, Part 1. Reaction Kinetics and Catalysis Letters, 2000, 71, 153-158.	0.6	1
158	Interaction of non-ionic hydrogels with small aromatic molecules. Polymers for Advanced Technologies, 2003, 14, 771-775.	3.2	1
159	Capillary theory of free fluid surfaces. Colloid and Polymer Science, 2007, 285, 1181-1191.	2.1	1
160	The Effect of Ionic Environment on the Adsorption of Phenol. , 2008, , 148-156.		1
161	Kinetics and mechanism of the deamination of primary aliphatic amines on the silica surface. Theoretical and Experimental Chemistry, 2011, 47, 176-182.	0.8	1
162	Effect of tetramethylammonium hydroxide on cotton cellulose compared to sodium hydroxide. Macromolecular Chemistry and Physics, 2000, 201, 2550-2556.	2.2	1

#	Article	IF	CITATIONS
163	Interactions in dopamine and indole loaded thermosensitive hydrogels seen by high sensitivity microDSC. Implications for drug delivery. Journal of Thermal Analysis and Calorimetry, 0, , .	3.6	1
164	Poisoning and Reuse of Supported Precious Metal Catalysts in the Hydrogenation of N-Heterocycles, Part II: Hydrogenation of 1-Methylpyrrole over Rhodium. Catalysts, 2022, 12, 730.	3.5	1
165	Title is missing!. Magyar Apróvad Közlemények, 2001, 63, 913-914.	1.4	0
166	Palladium as Catalyst in a Polycondensed Matrix, Part ii. Reaction Kinetics and Catalysis Letters, 2001, 73, 187-197.	0.6	0
167	Palladium as catalyst in polycondensed matrix, Part III Reaction Kinetics and Catalysis Letters, 2002, 76, 383-392.	0.6	0
168	Morphological Characterization of Oxidized and Metal Impregnated Spherical Carbons. , 2008, , 139-147.		0
169	MORPHOLOGY AND SURFACE CHEMISTRY OF CHEMICALLY TREATED ACTIVATED CARBONS., 2006, , 119-132.		0