
Jean-Charles Guery

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9335655/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Targeting androgen signaling in ILC2s protects from IL-33–driven lung inflammation, independently of KLRG1. Journal of Allergy and Clinical Immunology, 2022, 149, 237-251.e12.	2.9	23
2	Hydroxychloroquine inhibits proteolytic processing of endogenous TLR7 protein in human primary plasmacytoid dendritic cells. European Journal of Immunology, 2022, 52, 54-61.	2.9	10
3	Long non-coding RNA Xist contribution in systemic lupus erythematosus and rheumatoid arthritis. Clinical Immunology, 2022, 236, 108937.	3.2	22
4	Monocytes are the main source of STING-mediated IFN-α production. EBioMedicine, 2022, 80, 104047.	6.1	12
5	Sex hormone regulation of innate lymphoid cells. Biomedical Journal, 2021, 44, 144-156.	3.1	21
6	Escape from X Chromosome Inactivation and the Female Predominance in Autoimmune Diseases. International Journal of Molecular Sciences, 2021, 22, 1114.	4.1	58
7	Prédominance féminine des maladies auto-immunesÂ: les lymphocytes ont-ils un sexeÂ?. Revue Du Rhumatisme Monographies, 2021, 88, 3-7.	0.0	1
8	Separation of the Ca V 1.2â€Ca V 1.3 calcium channel duo prevents type 2 allergic airway inflammation. Allergy: European Journal of Allergy and Clinical Immunology, 2021, , .	5.7	3
9	Sex Differences in Primary HIV Infection: Revisiting the Role of TLR7-Driven Type 1 IFN Production by Plasmacytoid Dendritic Cells in Women. Frontiers in Immunology, 2021, 12, 729233.	4.8	13
10	Cav1.4 calcium channels control cytokine production by human peripheral TH17 cells and psoriatic skin-infiltrating T cells. Journal of Allergy and Clinical Immunology, 2021, , .	2.9	2
11	TLR7 dosage polymorphism shapes interferogenesis and HIV-1 acute viremia in women. JCI Insight, 2020, 5, .	5.0	36
12	CD49d/CD29â€integrin controls the accumulation of plasmacytoid dendritic cells into the CNS during neuroinflammation. European Journal of Immunology, 2019, 49, 2030-2043.	2.9	8
13	Deconstructing the sex bias in allergy and autoimmunity: From sex hormones and beyond. Advances in Immunology, 2019, 142, 35-64.	2.2	48
14	Female predisposition to TLR7-driven autoimmunity: gene dosage and the escape from X chromosome inactivation. Seminars in Immunopathology, 2019, 41, 153-164.	6.1	127
15	Effets protecteurs de la puberté chez les garçons dans les maladies allergiquesÂ: les androgènes un régulateur négatif des cellules lymphoà des innées de groupe 2. Revue Francaise D'allergologie, 2018, 58, 324-330.	0.2	0
16	<i>TLR7</i> escapes X chromosome inactivation in immune cells. Science Immunology, 2018, 3, .	11.9	395
17	The β and α2δ auxiliary subunits of voltage-gated calcium channel 1 (Cav1) are required for TH2 lymphocyte function and acute allergic airway inflammation. Journal of Allergy and Clinical Immunology, 2018, 142, 892-903.e8.	2.9	10
18	Estrogen Signaling in Bystander Foxp3neg CD4+ T Cells Suppresses Cognate Th17 Differentiation in <i>Trans</i> and Protects from Central Nervous System Autoimmunity. Journal of Immunology, 2018, 201, 3218-3228.	0.8	22

JEAN-CHARLES GUERY

#	Article	IF	CITATIONS
19	Androgen signaling negatively controls group 2 innate lymphoid cells. Journal of Experimental Medicine, 2017, 214, 1581-1592.	8.5	204
20	Estrogen Receptor-Dependent Regulation of Dendritic Cell Development and Function. Frontiers in Immunology, 2017, 8, 108.	4.8	116
21	Sex Differences in Asthma: A Key Role of Androgen-Signaling in Group 2 Innate Lymphoid Cells. Frontiers in Immunology, 2017, 8, 1069.	4.8	45
22	Sex Differences in Plasmacytoid Dendritic Cell Levels of IRF5 Drive Higher IFN-α Production in Women. Journal of Immunology, 2015, 195, 5327-5336.	0.8	186
23	Eomesodermin Expression in CD4+ T Cells Restricts Peripheral Foxp3 Induction. Journal of Immunology, 2015, 195, 4742-4752.	0.8	36
24	Estrogen-mediated protection of experimental autoimmune encephalomyelitis: Lessons from the dissection of estrogen receptor-signaling in vivo. Biomedical Journal, 2015, 38, 194.	3.1	33
25	X-Chromosome Complement and Estrogen Receptor Signaling Independently Contribute to the Enhanced TLR7-Mediated IFN-α Production of Plasmacytoid Dendritic Cells from Women. Journal of Immunology, 2014, 193, 5444-5452.	0.8	176
26	Bispecificity for Myelin and Neuronal Self-Antigens Is a Common Feature of CD4 T Cells in C57BL/6 Mice. Journal of Immunology, 2014, 193, 3267-3277.	0.8	14
27	Protein kinase C–dependent activation of CaV1.2 channels selectively controls human TH2-lymphocyte functions. Journal of Allergy and Clinical Immunology, 2014, 133, 1175-1183.e12.	2.9	33
28	Estradiol Promotes Functional Responses in Inflammatory and Steady-State Dendritic Cells through Differential Requirement for Activation Function-1 of Estrogen Receptor α. Journal of Immunology, 2013, 190, 5459-5470.	0.8	76
29	The TLR-mediated response of plasmacytoid dendritic cells is positively regulated by estradiol in vivo through cell-intrinsic estrogen receptor α signaling. Blood, 2012, 119, 454-464.	1.4	268
30	Estrogens and inflammatory autoimmune diseases. Joint Bone Spine, 2012, 79, 560-562.	1.6	4
31	Œstrogènes et maladies autoimmunes inflammatoires. Revue Du Rhumatisme (Edition Francaise), 2012, 79, A34-A36.	0.0	0
32	Estradiol administration controls eosinophilia through estrogen receptor-α activation during acute peritoneal inflammation. Journal of Leukocyte Biology, 2011, 90, 145-154.	3.3	24
33	Estrogen Receptor α Signaling in T Lymphocytes Is Required for Estradiol-Mediated Inhibition of Th1 and Th17 Cell Differentiation and Protection against Experimental Autoimmune Encephalomyelitis. Journal of Immunology, 2011, 187, 2386-2393.	0.8	181
34	Endogenous estrogens, through estrogen receptor α, constrain autoimmune inflammation in female mice by limiting CD4 ⁺ T ell homing into the CNS. European Journal of Immunology, 2010, 40, 3489-3498.	2.9	52
35	17β-Estradiol Promotes TLR4-Triggered Proinflammatory Mediator Production through Direct Estrogen Receptor α Signaling in Macrophages In Vivo. Journal of Immunology, 2010, 185, 1169-1176.	0.8	204
36	Knocking Down Ca _v 1 Calcium Channels Implicated in Th2 Cell Activation Prevents Experimental Asthma. American Journal of Respiratory and Critical Care Medicine, 2010, 181, 1310-1317.	5.6	51

JEAN-CHARLES GUERY

#	Article	IF	CITATIONS
37	Endothelial Estrogen Receptor-α Plays a Crucial Role in the Atheroprotective Action of 17β-Estradiol in Low-Density Lipoprotein Receptor–Deficient Mice. Circulation, 2009, 120, 2567-2576.	1.6	96
38	Estrogen Receptor α Expression in Both Endothelium and Hematopoietic Cells Is Required for the Accelerative Effect of Estradiol on Reendothelialization. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 1543-1550.	2.4	47
39	ROLE OF INFLAMMATORY CYTOKINES IN THE EFFECT OF ESTRADIOL ON ATHEROMA. Clinical and Experimental Pharmacology and Physiology, 2008, 35, 396-401.	1.9	8
40	Estrogen receptor α, but not β, is required for optimal dendritic cell differentiation and of CD40-induced cytokine production. Journal of Immunology, 2008, 180, 7047.3-7047.	0.8	2
41	Chronic Estradiol Administration In Vivo Promotes the Proinflammatory Response of Macrophages to TLR4 Activation: Involvement of the Phosphatidylinositol 3-Kinase Pathway. Journal of Immunology, 2008, 180, 7980-7988.	0.8	143
42	Estrogen Receptor α, but Not β, Is Required for Optimal Dendritic Cell Differentiation and CD40-Induced Cytokine Production. Journal of Immunology, 2008, 180, 3661-3669.	0.8	93
43	Natural killer cells recruited into lymph nodes inhibit alloreactive T-cell activation through perforin-mediated killing of donor allogeneic dendritic cells. Blood, 2008, 112, 661-671.	1.4	104
44	Dihydropyridine Receptor Blockade in the Treatment of Asthma. Recent Patents on Inflammation and Allergy Drug Discovery, 2008, 2, 109-116.	3.6	9
45	Calcium Channel Blocker Prevents T Helper Type 2 Cell–mediated Airway Inflammation. American Journal of Respiratory and Critical Care Medicine, 2007, 175, 1117-1124.	5.6	28
46	CD8+ T-cell–mediated killing of donor dendritic cells prevents alloreactive T helper type-2 responses in vivo. Blood, 2006, 108, 2257-2264.	1.4	38
47	Understanding the oestrogen action in experimental and clinical atherosclerosis. Fundamental and Clinical Pharmacology, 2006, 20, 539-548.	1.9	25
48	The cGMP/Protein Kinase G Pathway Contributes to Dihydropyridine-sensitive Calcium Response and Cytokine Production in TH2 Lymphocytes. Journal of Biological Chemistry, 2006, 281, 12421-12427.	3.4	27
49	Estrogen Enhances Susceptibility to Experimental Autoimmune Myasthenia Gravis by Promoting Type 1-Polarized Immune Responses. Journal of Immunology, 2005, 175, 5050-5057.	0.8	111
50	Dihydropyridine Receptors Are Selective Markers of Th2 Cells and Can Be Targeted to Prevent Th2-Dependent Immunopathological Disorders. Journal of Immunology, 2004, 172, 5206-5212.	0.8	51
51	Selection of Similar Naive T Cell Repertoires but Induction of Distinct T Cell Responses by Native and Modified Antigen. Journal of Immunology, 2004, 172, 3447-3453.	0.8	21
52	Estrogen Receptor α Signaling in Inflammatory Leukocytes Is Dispensable for 17β-Estradiol-Mediated Inhibition of Experimental Autoimmune Encephalomyelitis. Journal of Immunology, 2004, 173, 2435-2442.	0.8	78
53	Lymphocyte Calcium Signaling Involves Dihydropyridine-Sensitive L-Type Calcium Channels: Facts and Controversies. Critical Reviews in Immunology, 2004, 24, 24.	0.5	25
54	Estradiol enhances primary antigenâ€specific CD4 T cell responses and Th1 development <i>in vivo</i> . Essential role of estrogen receptor α expression in hematopoietic cells. European Journal of Immunology, 2003, 33, 512-521.	2.9	246

#	Article	IF	CITATIONS
55	Skin Graft Rejection Elicited by β2-Microglobulin as a Minor Transplantation Antigen Involves Multiple Effector Pathways: Role of Fas-Fas Ligand Interactions and Th2-Dependent Graft Eosinophil Infiltrates. Journal of Immunology, 2002, 169, 500-506.	0.8	22
56	Chronic Soluble Antigen Sensitization Primes a Unique Memory/Effector T Cell Repertoire Associated with Th2 Phenotype Acquisition In Vivo. Journal of Immunology, 2002, 168, 179-187.	0.8	16
57	Preventing NK Cell Activation by Donor Dendritic Cells Enhances Allospecific CD4 T Cell Priming and Promotes Th Type 2 Responses to Transplantation Antigens. Journal of Immunology, 2002, 169, 2979-2987.	0.8	49
58	Tracking T cell clonotypes in complex T lymphocyte populations by real-time quantitative PCR using fluorogenic complementarity-determining region-3-specific probes. Journal of Immunological Methods, 2002, 270, 269-280.	1.4	18
59	Blockade of CD86 in BALB/c mice infected withLeishmania major does not prevent the expansion of low avidity T cells. European Journal of Immunology, 2002, 32, 3566-3575.	2.9	1
60	Weak TCR stimulation induces a calcium signal that triggers IL-4 synthesis, stronger TCR stimulation induces MAP kinases that control IFN-γ production. European Journal of Immunology, 2001, 31, 2487-2496.	2.9	48
61	Protein kinase Câ€mediated calcium entry dependent upon dihydropyridineâ€sensitive channels: a Tâ€cell receptorâ€coupled signaling pathway involved in interleukin 4 synthesis. FASEB Journal, 2001, 15, 1577-1579.	0.5	51
62	Is pathogenic humoral autoimmunity a Th1 response?. Trends in Immunology, 2000, 21, 306-307.	7.5	2
63	Dendritic Cells Prime In Vivo Alloreactive CD4 T Lymphocytes Toward Type 2 Cytokine- and TGF-β-Producing Cells in the Absence of CD8 T Cell Activation. Journal of Immunology, 2000, 165, 4994-5003.	0.8	32
64	Interleukin 4–Producing Cd4 T Cells Arise from Different Precursors Depending on the Conditions of Antigen Exposure in Vivo. Journal of Experimental Medicine, 2000, 191, 683-694.	8.5	27
65	Selective Activation and Expansion of High-Affinity CD4+ T Cells in Resistant Mice upon Infection with Leishmania major. Immunity, 2000, 13, 771-782.	14.3	117
66	Lethal host-versus-graft disease and hypereosinophilia in the absence of MHC l–T-cell interactions. Journal of Clinical Investigation, 2000, 105, 1125-1132.	8.2	16
67	Polarization toward the T-helper(TH)1 type immune response is not required for rat experimental autoimmune myasthenia gravis. Transplantation Proceedings, 1999, 31, 1604-1605.	0.6	2
68	Regulation of the IL-12 receptor β2 subunit by soluble antigen and IL-12in vivo. European Journal of Immunology, 1998, 28, 209-220.	2.9	32
69	Impaired antigen presentation by murine I-Ad class II MHC molecules expressed in normal and HLA-DM-defective human B cell lines. International Immunology, 1997, 9, 889-896.	4.0	15
70	The mode of protein antigen administration determines preferential presentation of peptide-class II complexes by lymph node dendritic or B cells. International Immunology, 1997, 9, 9-15.	4.0	24
71	B Cells Present Antigen to CD4+T Cells, but Fail to Produce IL-12 Selective APC for Th2 Cell Development?. Annals of the New York Academy of Sciences, 1997, 815, 401-411.	3.8	21
72	Normal B cells fail to secrete interleukin-12. European Journal of Immunology, 1997, 27, 1632-1639.	2.9	50

JEAN-CHARLES GUERY

#	Article	IF	CITATIONS
73	Antigen Presentation and IL-12 Production by Dendritic Cells in Vivo. Advances in Experimental Medicine and Biology, 1997, 417, 317-321.	1.6	1
74	Manipulation of the Th1/Th2 Cell Balance: An Approach to Treat Human Autoimmune Diseases?. Autoimmunity, 1996, 23, 53-68.	2.6	51
75	Dendritic cells but not B cells present antigenic complexes to class II-restricted T cells after administration of protein in adjuvant Journal of Experimental Medicine, 1996, 183, 751-757.	8.5	96
76	Selective development of T helper (Th)2 cells induced by continuous administration of low dose soluble proteins to normal and beta(2)-microglobulin-deficient BALB/c mice Journal of Experimental Medicine, 1996, 183, 485-497.	8.5	188
77	Advances in Selective Immunosuppression. Advances in Pharmacology, 1995, 33, 255-285.	2.0	1
78	DRα:Eβ heterodimers in DRA transgenic mice hinder expression of Eα:Eβ molecules and are more efficient in antigen presentation. International Immunology, 1995, 7, 1927-1938.	4.0	7
79	Induction of Peripheral Tolerance in Primed Mice. Medical Science Symposia Series, 1994, , 107-114.	0.0	0
80	Selective immunosuppression. Trends in Immunology, 1993, 14, 285-289.	7.5	36
81	Selective immunosuppression. Trends in Pharmacological Sciences, 1993, 14, 178-182.	8.7	6
82	MHC class II molecules bind indiscriminately self and non-self peptide homologs: effect on the immunogenicity of non-self peptides. International Immunology, 1993, 5, 631-638.	4.0	13
83	Selective immunosuppression by administration of major histocompatibility complex class II-binding peptides. II. Preventive inhibition of primary and secondary in vivo antibody responses Journal of Experimental Medicine, 1993, 177, 1461-1468.	8.5	17
84	Selective immunosuppression by administration of major histocompatibility complex (MHC) class II-binding peptides. I. Evidence for in vivo MHC blockade preventing T cell activation Journal of Experimental Medicine, 1992, 175, 1345-1352.	8.5	42
85	Approaches toward peptide-based immunotherapy of autoimmune diseases. Seminars in Immunopathology, 1992, 14, 187-99.	4.0	8
86	Experimental Gold-Induced Autoimmunity. Nephrology Dialysis Transplantation, 1991, 6, 621-630.	0.7	53
87	Exogenous peptides compete for the presentation of endogenous antigens to major histocompatibility complex class II-restricted T cells Journal of Experimental Medicine, 1991, 174, 945-948.	8.5	57
88	Effect of the thiol group on experimental goldâ€induced autoimmunity. Arthritis and Rheumatism, 1991, 34, 1594-1599.	6.7	15
89	Specificity and cross-reactive idiotypes of anti-glomerular basement membrane autoantibodies in HgCl2-induced autoimmune glomerulonephritis. European Journal of Immunology, 1990, 20, 93-100.	2.9	40
90	Rat anti-glomerular basement membrane antibodies in toxin-induced autoimmunity and in chronic graft-vshost reaction share recurrent idiotypes. European Journal of Immunology, 1990, 20, 101-105.	2.9	23

#	Article	IF	CITATIONS
91	A spontaneous hybridoma producing autoanti-idiotypic antibodies that recognizea Vxâ^'associated idiotope in mercury-induced autoimmunity. European Journal of Immunology, 1990, 20, 1027-1031.	2.9	8
92	Mapping of a gene for the M r 48 000 tubular basement membrane antigen in the rat. Immunogenetics, 1989, 29, 350-354.	2.4	8
93	Metabolic Control of Type 2 Innate Lymphoid Cells Plasticity Toward Protective Type 1-Like Cells During <i>Mycobacterium Tuberculosis</i> Infection. SSRN Electronic Journal, 0, , .	0.4	Ο