Giorgia Giovannini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9334250/publications.pdf

Version: 2024-02-01

516710 580821 27 771 16 25 citations g-index h-index papers 27 27 27 1086 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	SERS discrimination of single DNA bases in single oligonucleotides by electro-plasmonic trapping. Nature Communications, 2019, 10, 5321.	12.8	151
2	Dye-doped silica nanoparticles: synthesis, surface chemistry and bioapplications. Cancer Nanotechnology, 2020, 11 , .	3.7	91
3	Detecting COVID-19 from Breath: A Game Changer for a Big Challenge. ACS Sensors, 2021, 6, 1408-1417.	7.8	88
4	Multiplexed Discrimination of Single Amino Acid Residues in Polypeptides in a Single SERS Hot Spot. Angewandte Chemie - International Edition, 2020, 59, 11423-11431.	13.8	71
5	Nanoporous gold metamaterials for high sensitivity plasmonic sensing. Nanoscale Horizons, 2019, 4, 1153-1157.	8.0	46
6	Hybrid plasmonic nanostructures based on controlled integration of MoS2 flakes on metallic nanoholes. Nanoscale, 2018, 10, 17105-17111.	5.6	32
7	pH-responsive silica nanoparticles for the treatment of skin wound infections. Acta Biomaterialia, 2022, 145, 172-184.	8.3	32
8	î»-DNA through Porous Materials—Surface-Enhanced Raman Scattering in a Simple Plasmonic Nanopore. Journal of Physical Chemistry C, 2020, 124, 22663-22670.	3.1	28
9	Metallic Nanoporous Aluminum–Magnesium Alloy for UV-Enhanced Spectroscopy. Journal of Physical Chemistry C, 2019, 123, 20287-20296.	3.1	27
10	†Overloading†Mefluorescent silica nanoparticles with dyes to improve biosensor performance. Journal of Materials Chemistry B, 2017, 5, 5564-5572.	5.8	25
11	Stabilizing silica nanoparticles in hydrogels: impact on storage and polydispersity. RSC Advances, 2017, 7, 19924-19933.	3.6	22
12	Improving colloidal stability of silica nanoparticles when stored in responsive gel: application and toxicity study. Nanotoxicology, 2018, 12, 407-422.	3.0	21
13	Galvanic Replacement Reaction as a Route to Prepare Nanoporous Aluminum for UV Plasmonics. Nanomaterials, 2020, 10, 102.	4.1	20
14	Site-selective functionalization of plasmonic nanopores for enhanced fluorescence emission rate and Förster resonance energy transfer. Nanoscale Advances, 2019, 1, 2454-2461.	4.6	19
15	Bioâ€Assisted Tailored Synthesis of Plasmonic Silver Nanorings and Siteâ€Selective Deposition on Graphene Arrays. Advanced Optical Materials, 2020, 8, 1901583.	7.3	18
16	Site-Selective Integration of MoS ₂ Flakes on Nanopores by Means of Electrophoretic Deposition. ACS Omega, 2019, 4, 9294-9300.	3.5	16
17	Metal-Modified Montmorillonite as Plasmonic Microstructure for Direct Protein Detection. Sensors, 2021, 21, 2655.	3.8	14
18	Coumarin-based, switchable fluorescent substrates for enzymatic bacterial detection. Talanta, 2018, 188, 448-453.	5 . 5	8

#	Article	IF	Citations
19	3D nanoporous antennas as a platform for high sensitivity IR plasmonic sensing. Optics Express, 2019, 27, 25912.	3.4	8
20	Electrophoretic Deposition of WS2 Flakes on Nanoholes Arraysâ€"Role of Used Suspension Medium. Materials, 2019, 12, 3286.	2.9	7
21	Novel electro-magnetophoretic separation method for the highly sensitive detection of analytes. Nanoscale Horizons, 2020, 5, 95-101.	8.0	7
22	Changes in Optical Properties upon Dye–Clay Interaction: Experimental Evaluation and Applications. Nanomaterials, 2021, 11, 197.	4.1	7
23	Thioflavin-modified molecularly imprinted hydrogel for fluorescent-based non-enzymatic glucose detection in wound exudate. Materials Today Bio, 2022, 14, 100258.	5 . 5	6
24	â€~Off–on' switchable fluorescent probe for prompt and cost-efficient detection of bacteria. New Journal of Chemistry, 2019, 43, 13094-13102.	2.8	4
25	Scalable production of magnetic fluorescent cellulose microparticles. Cellulose, 2021, 28, 7675-7685.	4.9	3
26	Plasmonic nanopore prepared on MoS2 membrane - hybrid nanostructures based on site selective deposition. , 2019, , .		0
27	FRET characterization of hollow plasmonic nanoantennas. , 2019, , .		0