
Wolfgang W A Schamel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9334218/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A set point in the selection of the $\hat{1}\pm\hat{1}^2$ TCR T cell repertoire imposed by pre-TCR signaling strength. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	5
2	Cooperative Interaction of Nck and Lck Orchestrates Optimal TCR Signaling. Cells, 2021, 10, 834.	4.1	4
3	Cross-TCR Antagonism Revealed by Optogenetically Tuning the Half-Life of the TCR Ligand Binding. International Journal of Molecular Sciences, 2021, 22, 4920.	4.1	5
4	Spatiotemporally confined red light-controlled gene delivery at single-cell resolution using adeno-associated viral vectors. Science Advances, 2021, 7, .	10.3	17
5	Wiskott-Aldrich Syndrome Protein: Roles in Signal Transduction in T Cells. Frontiers in Cell and Developmental Biology, 2021, 9, 674572.	3.7	11
6	Cholesterol Binds in a Reversed Orientation to TCRÎ ² -TM in Which Its OH Group is Localized to the Center of the Lipid Bilayer. Journal of Molecular Biology, 2021, 433, 167328.	4.2	5
7	Editorial: Cytoskeletal Regulation of Immune Response. Frontiers in Cell and Developmental Biology, 2021, 9, 791327.	3.7	1
8	Actin polymerization regulates recruitment of Nck to CD3 <i>ε</i> upon T ell receptor triggering. Immunology, 2020, 159, 298-308.	4.4	6
9	Noncanonical binding of Lck to CD3ε promotes TCR signaling and CAR function. Nature Immunology, 2020, 21, 902-913.	14.5	68
10	Tyrosine 192 within the SH2 domain of the Src-protein tyrosine kinase p56Lck regulates T-cell activation independently of Lck/CD45 interactions. Cell Communication and Signaling, 2020, 18, 183.	6.5	12
11	Boswellia carteri extract and 3-O-acetyl-alpha-boswellic acid suppress T cell function. Fìtoterapìâ, 2020, 146, 104694.	2.2	17
12	Implications of T cell receptor biology on the development of new T cell therapies for cancer. Immunotherapy, 2020, 12, 89-103.	2.0	9
13	αβ and γδT cell receptors: Similar but different. Journal of Leukocyte Biology, 2020, 107, 1045-1055.	3.3	53
14	Direct Regulation of the T Cell Antigen Receptor's Activity by Cholesterol. Frontiers in Cell and Developmental Biology, 2020, 8, 615996.	3.7	15
15	<scp>CCR</scp> 5 deficiency impairs <scp>CD</scp> 4 ⁺ Tâ€cell memory responses and antigenic sensitivity through increased ceramide synthesis. EMBO Journal, 2020, 39, e104749.	7.8	17
16	Optogenetic Tuning of Ligand Binding to The Human T cell Receptor Using The opto-ligand-TCR System. Bio-protocol, 2020, 10, e3540.	0.4	8
17	Production, Purification and Characterization of Recombinant Biotinylated Phytochrome B for Extracellular Optogenetics. Bio-protocol, 2020, 10, e3541.	0.4	10
18	The TCR is an allosterically regulated macromolecular machinery changing its conformation while working. Immunological Reviews, 2019, 291, 8-25.	6.0	50

WOLFGANG W A SCHAMEL

#	Article	IF	CITATIONS
19	Split intein-mediated selection of cells containing two plasmids using a single antibiotic. Nature Communications, 2019, 10, 4967.	12.8	20
20	Synthetic TRuC receptors engaging the complete T cell receptor for potent anti-tumor response. Nature Communications, 2019, 10, 2087.	12.8	117
21	Biomaterials: Phytochromeâ€Based Extracellular Matrix with Reversibly Tunable Mechanical Properties (Adv. Mater. 12/2019). Advanced Materials, 2019, 31, 1970083.	21.0	1
22	Light-Controlled Affinity Purification of Protein Complexes Exemplified by the Resting ZAP70 Interactome. Frontiers in Immunology, 2019, 10, 226.	4.8	11
23	Optogenetic control of integrin-matrix interaction. Communications Biology, 2019, 2, 15.	4.4	30
24	Optogenetic control shows that kinetic proofreading regulates the activity of the T cell receptor. ELife, 2019, 8, .	6.0	82
25	Selected signalling proteins recruited to the T ell receptor–CD3 complex. Immunology, 2018, 153, 42-50.	4.4	58
26	Dual-controlled optogenetic system for the rapid down-regulation of protein levels in mammalian cells. Scientific Reports, 2018, 8, 15024.	3.3	46
27	Anti-CD3 Fab Fragments Enhance Tumor Killing by Human Î ³ δT Cells Independent of Nck Recruitment to the Î ³ δT Cell Antigen Receptor. Frontiers in Immunology, 2018, 9, 1579.	4.8	19
28	CD3ζ. , 2018, , 877-886.		0
29	CD3. , 2018, , 860-868.		0
30	The Allostery Model of TCR Regulation. Journal of Immunology, 2017, 198, 47-52.	0.8	42
31	Key Role of the Scavenger Receptor MARCO in Mediating Adenovirus Infection and Subsequent Innate Responses of Macrophages. MBio, 2017, 8, .	4.1	55
32	Activation loop phosphorylation regulates Bâ€Raf <i>inÂvivo</i> and transformation by <scp>Bâ€Raf</scp> mutants. EMBO Journal, 2016, 35, 143-161.	7.8	29
33	Inhibition of T cell receptor signaling by cholesterol sulfate, a naturally occurring derivative of membrane cholesterol. Nature Immunology, 2016, 17, 844-850.	14.5	152
34	A Cholesterol-Based Allostery Model of T Cell Receptor Phosphorylation. Immunity, 2016, 44, 1091-1101.	14.3	183
35	Early onset combined immunodeficiency and autoimmunity in patients with loss-of-function mutation in <i>LAT</i> . Journal of Experimental Medicine, 2016, 213, 1185-1199.	8.5	57
36	Nck Binds to the T Cell Antigen Receptor Using Its SH3.1 and SH2 Domains in a Cooperative Manner, Promoting TCR Functioning. Journal of Immunology, 2016, 196, 448-458.	0.8	20

#	Article	IF	CITATIONS
37	CD3. , 2016, , 1-9.		Ο
38	CD3ζ., 2016, , 1-10.		0
39	Response to Comment on "A Novel Thymoma-Associated Immunodeficiency with Increased Naive T Cells and Reduced CD247 Expression― Journal of Immunology, 2015, 195, 3505.2-3506.	0.8	0
40	Nanoclusters of the resting T cell antigen receptor (TCR) localize to non-raft domains. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 802-809.	4.1	36
41	The ubiquitin-specific protease USP8 is critical for the development and homeostasis of T cells. Nature Immunology, 2015, 16, 950-960.	14.5	49
42	Red Light-Regulated Reversible Nuclear Localization of Proteins in Mammalian Cells and Zebrafish. ACS Synthetic Biology, 2015, 4, 951-958.	3.8	105
43	SYK expression endows human ZAP70-deficient CD8 T cells with residual TCR signaling. Clinical Immunology, 2015, 161, 103-109.	3.2	38
44	Preface to special issue on nanoscale membrane organisations. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 765-766.	4.1	2
45	Kidins220/ARMS binds to the B cell antigen receptor and regulates B cell development and activation. Journal of Experimental Medicine, 2015, 212, 1693-1708.	8.5	18
46	Conformational changes in the T cell receptor differentially determine T cell subset development in mice. Science Signaling, 2014, 7, ra115.	3.6	59
47	Relevance of Nck–CD3ε Interaction for T Cell Activation In Vivo. Journal of Immunology, 2014, 192, 2042-2053.	0.8	45
48	Non-overlapping functions of Nck1 and Nck2 adaptor proteins in T cell activation. Cell Communication and Signaling, 2014, 12, 21.	6.5	31
49	A common single nucleotide polymorphism impairs B-cell activating factor receptor's multimerization, contributing to common variable immunodeficiency. Journal of Allergy and Clinical Immunology, 2014, 133, 1222-1225.e10.	2.9	60
50	The CD3 Conformational Change in the γδT Cell Receptor Is Not Triggered by Antigens but Can Be Enforced to Enhance Tumor Killing. Cell Reports, 2014, 7, 1704-1715.	6.4	47
51	Visualization of TCR Nanoclusters via Immunogold Labeling, Freeze-Etching, and Surface Replication. Methods in Cell Biology, 2013, 117, 391-410.	1.1	3
52	Organization of the resting TCR in nanoscale oligomers. Immunological Reviews, 2013, 251, 13-20.	6.0	76
53	Nck Recruitment to the TCR Required for ZAP70 Activation during Thymic Development. Journal of Immunology, 2013, 190, 1103-1112.	0.8	35
54	Cholesterol and Sphingomyelin Drive Ligand-independent T-cell Antigen Receptor Nanoclustering. Journal of Biological Chemistry, 2012, 287, 42664-42674.	3.4	145

#	Article	IF	CITATIONS
55	Synthetic immune signaling. Current Opinion in Biotechnology, 2012, 23, 780-784.	6.6	8
56	Increased Sensitivity of Antigen-Experienced T Cells through the Enrichment of Oligomeric T Cell Receptor Complexes. Immunity, 2011, 35, 375-387.	14.3	153
57	Quantitative Analysis of Protein Phosphorylations and Interactions by Multi-Colour IP-FCM as an Input for Kinetic Modelling of Signalling Networks. PLoS ONE, 2011, 6, e22928.	2.5	10
58	Preâ€clustered TCR complexes. FEBS Letters, 2010, 584, 4832-4837.	2.8	21
59	Analysis of novel phospho-ITAM specific antibodies in a S2 reconstitution system for TCR–CD3 signalling. Immunology Letters, 2010, 130, 43-50.	2.5	12
60	Detection of phosphorylated T and B cell antigen receptor species by Phos-tag SDS- and Blue Native-PAGE. Immunology Letters, 2010, 130, 51-56.	2.5	14
61	The short length of the extracellular domain of ζ is crucial for T cell antigen receptor function. Immunology Letters, 2008, 116, 195-202.	2.5	14
62	The extracellular part of ζ is buried in the T cell antigen receptor complex. Immunology Letters, 2008, 116, 203-210.	2.5	12
63	A permissive geometry model for TCR–CD3 activation. Trends in Biochemical Sciences, 2008, 33, 51-57.	7.5	48
64	T Cell Receptor Engagement Triggers Its CD3ε and CD3ζ Subunits to Adopt a Compact, Locked Conformation. PLoS ONE, 2008, 3, e1747.	2.5	30
65	Permissive Geometry Model. Advances in Experimental Medicine and Biology, 2008, 640, 113-120.	1.6	9
66	Clustering Models. Advances in Experimental Medicine and Biology, 2008, 640, 64-73.	1.6	14
67	The TCR binding site does move. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 16398-16399.	7.1	6
68	Different composition of the human and the mouse γδT cell receptor explains different phenotypes of CD3γ and CD3δimmunodeficiencies. Journal of Experimental Medicine, 2007, 204, 2537-2544.	8.5	56
69	Full Activation of the T Cell Receptor Requires Both Clustering and Conformational Changes at CD3. Immunity, 2007, 26, 43-54.	14.3	229
70	A native antibody-based mobility-shift technique (NAMOS-assay) to determine the stoichiometry of multiprotein complexes. Journal of Immunological Methods, 2007, 324, 74-83.	1.4	31
71	Tâ€cell antigenâ€receptor stoichiometry: preâ€clustering for sensitivity. EMBO Reports, 2006, 7, 490-495.	4.5	73
72	Coexistence of multivalent and monovalent TCRs explains high sensitivity and wide range of response. Journal of Experimental Medicine, 2005, 202, 493-503.	8.5	288

#	Article	IF	CITATIONS
73	Differences in pairing and cluster formation of T cell receptor α- and β-chains in T cell clones and fusion hybridomas. Immunobiology, 2005, 210, 685-694.	1.9	14
74	Initiation of TCR signaling: regulation within CD3 dimers. Immunological Reviews, 2003, 191, 38-46.	6.0	126
75	A high-molecular-weight complex of membrane proteins BAP29/BAP31 is involved in the retention of membrane-bound IgD in the endoplasmic reticulum. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 9861-9866.	7.1	88
76	Recruitment of Nck by CD3ϵ Reveals a Ligand-Induced Conformational Change Essential for T Cell Receptor Signaling and Synapse Formation. Cell, 2002, 109, 901-912.	28.9	411