
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9334210/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bloodâ€brain barrierâ€specific properties of a human adult brain endothelial cell line. FASEB Journal, 2005, 19, 1872-1874.	0.5	1,155
2	Statin therapy and autoimmune disease: from protein prenylation to immunomodulation. Nature Reviews Immunology, 2006, 6, 358-370.	22.7	581
3	LRG1 promotes angiogenesis by modulating endothelial TGF-Î ² signalling. Nature, 2013, 499, 306-311.	27.8	403
4	Effect of high-dose simvastatin on brain atrophy and disability in secondary progressive multiple sclerosis (MS-STAT): a randomised, placebo-controlled, phase 2 trial. Lancet, The, 2014, 383, 2213-2221.	13.7	361
5	Development and characterisation of a rat brain capillary endothelial culture: towards an <i>in vitro</i> blood-brain barrier. Journal of Cell Science, 1992, 103, 23-37.	2.0	290
6	ICAM-1-Coupled Cytoskeletal Rearrangements and Transendothelial Lymphocyte Migration Involve Intracellular Calcium Signaling in Brain Endothelial Cell Lines. Journal of Immunology, 2000, 165, 3375-3383.	0.8	278
7	Oxidative Stress Affects the Junctional Integrity of Retinal Pigment Epithelial Cells. , 2004, 45, 675.		229
8	RPE transplantation and its role in retinal disease. Progress in Retinal and Eye Research, 2007, 26, 598-635.	15.5	218
9	Lymphocyte migration through brain endothelial cell monolayers involves signaling through endothelial ICAM-1 via a rho-dependent pathway. Journal of Immunology, 1999, 162, 2964-73.	0.8	215
10	Review: Leucocyte–endothelial cell crosstalk at the blood–brain barrier: A prerequisite for successful immune cell entry to the brain. Neuropathology and Applied Neurobiology, 2011, 37, 24-39.	3.2	204
11	Lovastatin inhibits brain endothelial cell Rhoâ€mediated lymphocyte migration and attenuates experimental autoimmune encephalomyelitis. FASEB Journal, 2003, 17, 1-16.	0.5	201
12	Complement factor H deficiency in aged mice causes retinal abnormalities and visual dysfunction. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 16651-16656.	7.1	201
13	Long-term preservation of cortically dependent visual function in RCS rats by transplantation. Nature Neuroscience, 2002, 5, 53-56.	14.8	194
14	Statins and the vascular endothelial inflammatory response. Trends in Immunology, 2007, 28, 88-98.	6.8	194
15	Subretinal transplantation of genetically modified human cell lines attenuates loss of visual function in dystrophic rats. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 9942-9947.	7.1	189
16	ICAM-1 signaling pathways associated with Rho activation in microvascular brain endothelial cells. Journal of Immunology, 1998, 161, 5755-61.	0.8	180
17	Dexamethasone regulation of matrix metalloproteinase expression in CNS vascular endothelium. Brain, 2000, 123, 698-709.	7.6	175
18	Changes in cytoskeletal and tight junctional proteins correlate with decreased permeability induced by dexamethasone in cultured rat brain endothelial cells. Neuroscience Letters, 2003, 344, 112-116.	2.1	167

#	Article	IF	CITATIONS
19	Decreased TNF-α synthesis by macrophages restricts cutaneous immunosurveillance by memory CD4+ T cells during aging. Journal of Experimental Medicine, 2009, 206, 1929-1940.	8.5	161
20	SV40 large T immortalised cell lines of the rat blood-brain and blood-retinal barriers retain their phenotypic and immunological characteristics. Journal of Neuroimmunology, 1996, 71, 51-63.	2.3	152
21	Phosphorylation of vascular endothelial cadherin controls lymphocyte emigration. Journal of Cell Science, 2008, 121, 29-37.	2.0	148
22	Reactive oxygen species enhance the migration of monocytes across the bloodâ€brain barrier in vitro. FASEB Journal, 2001, 15, 1852-1854.	0.5	141
23	T-cell interaction with ICAM-1/ICAM-2 double-deficient brain endothelium in vitro: the cytoplasmic tail of endothelial ICAM-1 is necessary for transendothelial migration of T cells. Blood, 2003, 102, 3675-3683.	1.4	136
24	Intracellular Domain of Brain Endothelial Intercellular Adhesion Molecule-1 Is Essential for T Lymphocyte-Mediated Signaling and Migration. Journal of Immunology, 2003, 171, 2099-2108.	0.8	134
25	Lymphocyte adhesion and transendothelial migration in the central nervous system: the role of LFA-1, ICAM-1, VLA-4 and VCAM-1. off. Immunology, 1995, 86, 408-15.	4.4	131
26	Permeability of the Blood-Brain Barrier to the Immunosuppressive Cyclic Peptide Cyclosporin A. Journal of Neurochemistry, 1990, 55, 1222-1230.	3.9	123
27	Lymphocyte migration into the central nervous system. Vascular Pharmacology, 2002, 38, 315-322.	2.1	112
28	Inhibition of Rho GTPases with Protein Prenyltransferase Inhibitors Prevents Leukocyte Recruitment to the Central Nervous System and Attenuates Clinical Signs of Disease in an Animal Model of Multiple Sclerosis. Journal of Immunology, 2002, 168, 4087-4094.	0.8	105
29	Mechanisms of blood-brain barrier breakdown. Neuroradiology, 1991, 33, 95-100.	2.2	102
30	Characterization of a rat retinal endothelial cell culture and the expression of P-glycoprotein in brain and retinal endothelium in vitro. Journal of Neuroimmunology, 1992, 39, 123-132.	2.3	100
31	Probing the biomechanical contribution of the endothelium to lymphocyte migration: diapedesis by the path of least resistance. Journal of Cell Science, 2014, 127, 3720-34.	2.0	98
32	Development and characterisation of a rat brain capillary endothelial culture: towards an in vitro blood-brain barrier. Journal of Cell Science, 1992, 103 (Pt 1), 23-37.	2.0	89
33	Expression of Chemokines and Their Receptors by Human Brain Endothelium: Implications for Multiple Sclerosis. Journal of Neuropathology and Experimental Neurology, 2009, 68, 227-240.	1.7	87
34	Kinetics of thiamine transport across the bloodâ€brain barrier in the rat Journal of Physiology, 1982, 327, 95-103.	2.9	83
35	The RhoA Activator GEF-H1/Lfc Is a Transforming Growth Factor-Î ² Target Gene and Effector That Regulates α-Smooth Muscle Actin Expression and Cell Migration. Molecular Biology of the Cell, 2010, 21, 860-870.	2.1	83
36	Adrenomedullin regulates blood–brain barrier functions in vitro. NeuroReport, 2001, 12, 4139-4142.	1.2	82

#	Article	IF	CITATIONS
37	Genetic ablation of retinal pigment epithelial cells reveals the adaptive response of the epithelium and impact on photoreceptors. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 18728-18733.	7.1	80
38	Differential Apicobasal VEGF Signaling at Vascular Blood-Neural Barriers. Developmental Cell, 2014, 30, 541-552.	7.0	79
39	The "Neuro-Glial-Vascular―Unit: The Role of Glia in Neurovascular Unit Formation and Dysfunction. Frontiers in Cell and Developmental Biology, 2021, 9, 732820.	3.7	79
40	ICAM-1–mediated Endothelial Nitric Oxide Synthase Activation via Calcium and AMP-activated Protein Kinase Is Required for Transendothelial Lymphocyte Migration. Molecular Biology of the Cell, 2009, 20, 995-1005.	2.1	73
41	Interactions between Brain Endothelial Cells and Human T-Cell Leukemia Virus Type 1-Infected Lymphocytes: Mechanisms of Viral Entry into the Central Nervous System. Journal of Virology, 2000, 74, 6021-6030.	3.4	72
42	Cytokine regulation of MCP-1 expression in brain and retinal microvascular endothelial cells. Journal of Neuroimmunology, 2003, 142, 1-9.	2.3	72
43	Dopamine neurones form a discrete plexus with melanopsin cells in normal and degenerating retina. Experimental Neurology, 2007, 205, 26-35.	4.1	72
44	Methamphetamine-induced nitric oxide promotes vesicular transport in blood–brain barrier endothelial cells. Neuropharmacology, 2013, 65, 74-82.	4.1	71
45	Pharmacological Targeting of ICAM-1 Signaling in Brain Endothelial Cells: Potential for Treating Neuroinflammation. Cellular and Molecular Neurobiology, 2005, 25, 153-170.	3.3	69
46	Dexamethasone regulation of P-glycoprotein activity in an immortalized rat brain endothelial cell line, GPNT. Journal of Neurochemistry, 1999, 73, 1954-63.	3.9	69
47	Cerebral Endothelial Cells are a Major Source of Adrenomedullin. Journal of Neuroendocrinology, 2002, 14, 283-293.	2.6	67
48	Annexin A2 Regulates Phagocytosis of Photoreceptor Outer Segments in the Mouse Retina. Molecular Biology of the Cell, 2009, 20, 3896-3904.	2.1	67
49	Role of LFAâ€1, ICAMâ€1, VLAâ€4 and VCAMâ€1 in lymphocyte migration across retinal pigment epithelial monolayers <i>in vitro</i> . Immunology, 1996, 88, 456-462.	4.4	66
50	Suppression of Autoimmune Retinal Disease by Lovastatin Does Not Require Th2 Cytokine Induction. Journal of Immunology, 2005, 174, 2327-2335.	0.8	66
51	Sub-lytic C5b-9 induces functional changes in retinal pigment epithelial cells consistent with age-related macular degeneration. Eye, 2011, 25, 1074-1082.	2.1	65
52	Statins in the treatment of central nervous system autoimmune disease. Journal of Neuroimmunology, 2006, 178, 140-148.	2.3	59
53	LRG1: an emerging player in disease pathogenesis. Journal of Biomedical Science, 2022, 29, 6.	7.0	59
54	The Effect of Bile Salts on the Permeability and Ultrastructure of the Perfused, Energy-Depleted, Rat Blood-Brain Barrier, Journal of Cerebral Blood Flow and Metabolism, 1991, 11, 644-654.	4.3	58

#	Article	IF	CITATIONS
55	Factors controlling T-cell migration across rat cerebral endothelium in vitro. Journal of Neuroimmunology, 1997, 75, 84-94.	2.3	58
56	Estrogen inhibits NF??B-dependent inflammationin brain endothelium without interfering withl??B degradation. NeuroReport, 2002, 13, 1469-1472.	1.2	57
57	Motility and Ramification of Human Fetal Microglia in Culture: An Investigation Using Time-Lapse Video Microscopy and Image Analysis. Experimental Cell Research, 2002, 274, 68-82.	2.6	56
58	The effect of TNF-Î \pm and IL-6 on the permeability of the rat blood-retinal barrier in vivo. Acta Neuropathologica, 1996, 91, 624-632.	7.7	52
59	Blood-Brain Barrier In Vitro Models and Their Application in Toxicology: The Report and Recommendations of ECVAM Workshop 49,. ATLA Alternatives To Laboratory Animals, 2004, 32, 37-50.	1.0	50
60	Basement Membrane-Dependent Modification of Phenotype and Gene Expression in Human Retinal Pigment Epithelial ARPE-19 Cells. , 2004, 45, 2786.		48
61	Functions of lipid raft membrane microdomains at the blood–brain barrier. Journal of Molecular Medicine, 2009, 87, 765-774.	3.9	48
62	Ultrastructural analysis of interleukin-1 beta-induced leukocyte recruitment to the rat retina. Investigative Ophthalmology and Visual Science, 1997, 38, 25-35.	3.3	46
63	Endothelial MAPKs Direct ICAM-1 Signaling to Divergent Inflammatory Functions. Journal of Immunology, 2017, 198, 4074-4085.	0.8	41
64	A Multifunctional Role of Leucine-Rich α-2-Glycoprotein 1 in Cutaneous Wound Healing Under Normal and Diabetic Conditions. Diabetes, 2020, 69, 2467-2480.	0.6	41
65	Cross-Linking of Brain Endothelial Intercellular Adhesion Molecule (ICAM)-1 Induces Association of ICAM-1 With Detergent-Insoluble Cytoskeletal Fraction. Arteriosclerosis, Thrombosis, and Vascular Biology, 2001, 21, 810-816.	2.4	37
66	Effect of lymphocytic infiltration on the blood-retinal barrier in experimental autoimmune uveoretinitis. Clinical and Experimental Immunology, 2008, 88, 473-477.	2.6	37
67	Temporal multi-omics identifies LRG1 as a vascular niche instructor of metastasis. Science Translational Medicine, 2021, 13, eabe6805.	12.4	36
68	Interleukin-1 beta-induced disruption of the retinal vascular barrier of the central nervous system is mediated through leukocyte recruitment and histamine. American Journal of Pathology, 1997, 150, 329-40.	3.8	36
69	PECAMâ€1 engagement counteracts ICAMâ€1â€induced signaling in brain vascular endothelial cells ² . Journal of Neurochemistry, 2007, 103, 793-801.	3.9	35
70	The vasculature of experimental brain tumours. Journal of the Neurological Sciences, 1984, 65, 59-68.	0.6	34
71	Lymphocyte trafficking through the blood–brain barrier is dependent on endothelial cell heterotrimeric Gâ€protein signaling. FASEB Journal, 2002, 16, 1185-1194.	0.5	34
72	Apelin Is Required for Non-Neovascular Remodeling in the Retina. American Journal of Pathology, 2012, 180, 399-409.	3.8	31

#	Article	IF	CITATIONS
73	Maintenance of the integrity of the blood-brain barrier in the rat during an in situ saline-based perfusion. Neuroscience Letters, 1985, 56, 223-227.	2.1	30
74	Retinal Pigment Epithelial Cells Mitigate the Effects of Complement Attack by Endocytosis of C5b-9. Journal of Immunology, 2015, 195, 3382-3389.	0.8	30
75	The fetal mouse metatarsal bone explant as a model of angiogenesis. Nature Protocols, 2015, 10, 1459-1473.	12.0	29
76	Applying causal models to explore the mechanism of action of simvastatin in progressive multiple sclerosis. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11020-11027.	7.1	28
77	Antigen presentation by rat brain and retinal endothelial cells. Journal of Neuroimmunology, 1995, 61, 231-239.	2.3	27
78	Preservation of visual cortical function following retinal pigment epithelium transplantation in the RCS rat using optical imaging techniques. European Journal of Neuroscience, 2007, 25, 1940-1948.	2.6	26
79	Ten years of progress in vaccination against cancer: the need to counteract cancer evasion by dual targeting in future therapies. Cancer Immunology, Immunotherapy, 2011, 60, 1127-1135.	4.2	26
80	The expression of retinal cell markers in human retinal pigment epithelial cells and their augmentation by the synthetic retinoid fenretinide. Molecular Vision, 2011, 17, 1701-15.	1.1	26
81	The blood-retinal barrier in experimental autoimmune uveoretinitis (EAU): a review. Current Eye Research, 1992, 11, 25-32.	1.5	25
82	Expression of G-protein subtypes in cultured cerebral endothelial cells. Neurochemistry International, 1998, 33, 179-185.	3.8	25
83	Lymphocyte migration through cultured endothelial cell monolayers derived from the blood-retinal barrier. Immunology, 1993, 80, 401-6.	4.4	25
84	Hyperosmolar Opening of the Blood-Brain Barrier in the Energy-Depleted Rat Brain. Part 1. Permeability Studies. Journal of Cerebral Blood Flow and Metabolism, 1988, 8, 9-15.	4.3	24
85	Astrocytes, Cerebral Endothelium, and Cell Culture Annals of the New York Academy of Sciences, 1991, 633, 426-431.	3.8	24
86	Novel Role of CD47 in Rat Microvascular Endothelium. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 2566-2576.	2.4	24
87	Ezrin and moesin co-localise with ICAM-1 in brain endothelial cells but are not directly associated. Molecular Brain Research, 2002, 105, 47-59.	2.3	23
88	Modulation of Sub-RPE Deposits In Vitro: A Potential Model for Age-Related Macular Degeneration. Investigative Ophthalmology and Visual Science, 2004, 45, 1281-1288.	3.3	22
89	Cyclic Adenosine Monophosphate Regulates the Expression of the Intercellular Adhesion Molecule and the Inducible Nitric Oxide Synthase in Brain Endothelial Cells. Journal of Cerebral Blood Flow and Metabolism, 2000, 20, 688-699.	4.3	21
90	How do statins control neuroinflammation?. Inflammation Research, 2003, 52, 399-403.	4.0	21

#	Article	IF	CITATIONS
91	Lymphocyte adhesion to cultured endothelial cells of the blood-retinal barrier. Journal of Neuroimmunology, 1993, 48, 161-168.	2.3	20
92	Constant illumination causes spatially discrete dopamine depletion in the normal and degenerate retina. Journal of Chemical Neuroanatomy, 2007, 33, 9-22.	2.1	20
93	Complement Factor H Deficiency Results in Decreased Neuroretinal Expression of <i>Cd59a</i> in Aged Mice. , 2012, 53, 6324.		20
94	Threonine Entry into Rat Brain After Diet-Induced Changes in Plasma Amino Acids. Journal of Neurochemistry, 1987, 48, 1879-1886.	3.9	19
95	In situ regeneration of retinal pigment epithelium by gene transfer of E2F2: a potential strategy for treatment of macular degenerations. Gene Therapy, 2017, 24, 810-818.	4.5	19
96	CCL4 induces inflammatory signalling and barrier disruption in the neurovascular endothelium. Brain, Behavior, & Immunity - Health, 2021, 18, 100370.	2.5	19
97	LRG1 destabilizes tumor vessels and restricts immunotherapeutic potency. Med, 2021, 2, 1231-1252.e10.	4.4	19
98	Comparison of the effects of some thiamine analogues upon thiamine transport across the bloodâ€brain barrier of the rat Journal of Physiology, 1985, 369, 79-91.	2.9	18
99	THE EFFECT OF A METABOLIC INHIBITOR UPON THE PROPERTIES OF THE CEREBRAL VASCULATURE DURING A WHOLEâ€HEAD SALINE PERFUSION OF THE RAT. Quarterly Journal of Experimental Physiology (Cambridge,) Tj E	ՐՉդծ 1 0.7	78 48 14 rg₿T
100	Immortalized Human Fetal Retinal Cells Retain Progenitor Characteristics and Represent a Potential Source for the Treatment of Retinal Degenerative Disease. Cell Transplantation, 2010, 19, 1291-1306.	2.5	18
101	The ORNATE India Project: United Kingdom–India Research Collaboration to tackle visual impairment due to diabetic retinopathy. Eye, 2020, 34, 1279-1286.	2.1	18
102	Lymphocyte Migration across the Anterior and Posterior Blood–Retinal Barrierin Vitro. Cellular Immunology, 1996, 168, 267-275.	3.0	17
103	Complement Stimulates Retinal Pigment Epithelial Cells to Undergo Pro-Inflammatory Changes. Ophthalmic Research, 2015, 54, 195-203.	1.9	17
104	High resolution imaging of fluorescein patterns in RCS rat retinae and their direct correlation with histology. Experimental Eye Research, 2006, 82, 164-171.	2.6	16
105	Retinal Changes Precede Visual Dysfunction in the Complement Factor H Knockout Mouse. PLoS ONE, 2013, 8, e68616.	2.5	16
106	Leucine-rich alpha-2-glycoprotein 1 (LRG1) as a novel ADC target. RSC Chemical Biology, 2021, 2, 1206-1220.	4.1	15
107	The effect of dexamethasone on vascular permeability of experimental brain tumours. Acta Neuropathologica, 1986, 69, 288-294.	7.7	14
108	Potential of statins for the treatment of multiple sclerosis. Lancet Neurology, The, 2003, 2, 9-10.	10.2	13

JOHN GREENWOOD

#	Article	IF	CITATIONS
109	Experimental Manipulation of the Blood-Brain â€and Blood-Retinal Barriers. Handbook of Experimental Pharmacology, 1992, , 459-486.	1.8	13
110	Inhibition of thiamine transport across the bloodâ€brain barrier in the rat by a chemical analogue of the vitamin Journal of Physiology, 1983, 336, 479-486.	2.9	11
111	The Effect of a Low pH Saline Perfusate upon the Integrity of the Energy-Depleted Rat Blood-Brain Barrier. Journal of Cerebral Blood Flow and Metabolism, 1989, 9, 234-242.	4.3	10
112	The Transport of Leucine and Aminocyclopentanecarboxylate across the Intact, Energy-Depleted Rat Blood—Brain Barrier. Journal of Cerebral Blood Flow and Metabolism, 1989, 9, 226-233.	4.3	10
113	Regulation of retinal pigment epithelial cell phenotype by Annexin A8. Scientific Reports, 2017, 7, 4638.	3.3	10
114	Small-molecule antagonist of VLA-4 (GW559090) attenuated neuro-inflammation by targeting Th17 cell trafficking across the blood-retinal barrier in experimental autoimmune uveitis. Journal of Neuroinflammation, 2021, 18, 49.	7.2	10
115	LRG1 Expression Is Elevated in the Eyes of Patients with Neovascular Age-Related Macular Degeneration. International Journal of Molecular Sciences, 2021, 22, 8879.	4.1	10
116	LRG1 as a novel therapeutic target in eye disease. Eye, 2022, 36, 328-340.	2.1	10
117	Angiopathic activity of LRG1 is induced by the IL-6/STAT3 pathway. Scientific Reports, 2022, 12, 4867.	3.3	10
118	Dietary Amino Acid Analogues and Transport of Lysine or Valine across the Blood-Brain Barrier in Rats. Journal of Nutrition, 1988, 118, 756-763.	2.9	9
119	Annexin A8 regulates Wnt signaling to maintain the phenotypic plasticity of retinal pigment epithelial cells. Scientific Reports, 2020, 10, 1256.	3.3	9
120	Transport of thiamin across the blood-brain barrier of the rat in the absence of aerobic metabolism. Brain Research, 1986, 399, 148-151.	2.2	8
121	Endothelial Protease Activated Receptor 1 (PAR1) Signalling Is Required for Lymphocyte Transmigration across Brain Microvascular Endothelial Cells. Cells, 2020, 9, 2723.	4.1	7
122	Strain specific variation in IFN-Î ³ inducible lymphocyte adhesion to rat brain endothelial cells. Journal of Neuroimmunology, 1998, 91, 28-32.	2.3	6
123	Role of the vascular endothelium in immunologically mediated neurological diseases. , 1995, , 96-123.		6
124	Regulation of C3 Activation by the Alternative Complement Pathway in the Mouse Retina. PLoS ONE, 2016, 11, e0161898.	2.5	5
125	The Blood-Retinal Barrier in Immune-Mediated Diseases of the Retina. , 1995, , 315-326.		4
126	Development and Characterization of Immortalized Cerebral Endothelial Cell Lines. , 2003, 89, 349-364.		3

Development and Characterization of Immortalized Cerebral Endothelial Cell Lines. , 2003, 89, 349-364. 126

#	Article	IF	CITATIONS
127	TP1-11â€MS-STAT2: a phase 3 trial of high dose simvastatin in secondary progressive multiple sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, e13.1-e13.	1.9	3
128	Functional Evaluation of AMD-Associated Risk Variants of Complement Factor B. , 2020, 61, 19.		3
129	A supravital brain perfusion technique for the study of the blood-brain barrier: With Special Reference to Leucine Transport. , 1988, , 317-331.		3
130	Highlights of Children with Cancer UK's Workshop on Drug Delivery in Paediatric Brain Tumours. Ecancermedicalscience, 2016, 10, 630.	1.1	2
131	The vasculature of experimental brain tumours: angiogenesis, vascular pathology and permeability studies. , 1986, , 197-202.		2
132	Structural basis of human LRG1 recognition by Magacizumab, a humanized monoclonal antibody with therapeutic potential. Acta Crystallographica Section D: Structural Biology, 2022, 78, 725-734.	2.3	2
133	Therapeutic Validation of GEF-H1 Using a De Novo Designed Inhibitor in Models of Retinal Disease. Cells, 2022, 11, 1733.	4.1	2
134	Selective closure of the vascular bed of an experimental glioma model during in situ saline perfusion. Neuropathology and Applied Neurobiology, 1994, 20, 448-453.	3.2	1
135	REPORT OF A MEETING THE THIRD ANNUAL BLOOD–BRAIN BARRIER CLUB SYMPOSIUM. Neuropathology and Applied Neurobiology, 1988, 14, 89-89.	3.2	0
136	Immune Retinal Vascular Disease. Vascular Medicine Review, 1995, vmr-6, 227-240.	0.3	0
137	A Comparison of Lymphocyte Migration Across the Anterior and Posterior Blood-Retinal Barrier in Vitro. Advances in Behavioral Biology, 1996, , 245-251.	0.2	0
138	TGF-beta in ocular angiogenesis. Acta Ophthalmologica, 2014, 92, 0-0.	1.1	0
139	The Use of Adaptive Optics Imaging for Clinical Trials. , 2020, , .		Ο