Richard Buggs

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9333764/publications.pdf

Version: 2024-02-01

186265 114465 5,273 67 28 63 citations h-index g-index papers 77 77 77 6231 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Genomic structure and diversity of oak populations in British parklands. Plants People Planet, 2022, 4, 167-181.	3.3	7
2	Uses and benefits of digital sequence information from plant genetic resources: Lessons learnt from botanical collections. Plants People Planet, 2022, 4, 33-43.	3.3	10
3	A highâ€quality reference genome for <i>Fraxinus pennsylvanica</i> for ash species restoration and research. Molecular Ecology Resources, 2022, 22, 1284-1302.	4.8	12
4	Reconfiguring Darwin's abominable mystery. Nature Plants, 2022, 8, 194-195.	9.3	1
5	A chromosomeâ€scale genome assembly of European hazel (<i>Corylus avellana</i> ÂL.) reveals targets for crop improvement. Plant Journal, 2021, 105, 1413-1430.	5.7	32
6	Introgression between <i>Betula tianshanica</i> and <i>Betula microphylla</i> and its implications for conservation. Plants People Planet, 2021, 3, 363-374.	3.3	5
7	Resolving phylogeny and polyploid parentage using genus-wide genome-wide sequence data from birch trees. Molecular Phylogenetics and Evolution, 2021, 160, 107126.	2.7	26
8	Unraveling Genetic Diversity Amongst European Hazelnut (Corylus avellana L.) Varieties in Turkey. Frontiers in Plant Science, 2021, 12, 661274.	3.6	8
9	The origin of Darwin's "abominable mystery― American Journal of Botany, 2021, 108, 22-36.	1.7	10
10	Extraction and high-throughput sequencing of oak heartwood DNA: Assessing the feasibility of genome-wide DNA methylation profiling. PLoS ONE, 2021, 16, e0254971.	2.5	1
11	Evidence for the Widespread Occurrence of Bacteria Implicated in Acute Oak Decline from Incidental Genetic Sampling. Forests, 2021, 12, 1683.	2.1	7
12	The viability of a breeding programme for ash in the British Isles in the face of ash dieback. Plants People Planet, 2020, 2, 29-40.	3.3	15
13	Genomic assessment of local adaptation in dwarf birch to inform assisted gene flow. Evolutionary Applications, 2020, 13, 161-175.	3.1	37
14	Resistance of European ash (<i>Fraxinus excelsior</i>) saplings to larval feeding by the emerald ash borer (<i>Agrilus planipennis</i>). Plants People Planet, 2020, 2, 41-46.	3.3	9
15	Genetic diversity and domestication of hazelnut (<i>Corylus avellana</i> L.) in Turkey. Plants People Planet, 2020, 2, 326-339.	3.3	16
16	Changing perceptions of tree resistance research. Plants People Planet, 2020, 2, 2-4.	3.3	9
17	FluentDNA: Nucleotide Visualization of Whole Genomes, Annotations, and Alignments. Frontiers in Genetics, 2020, 11, 292.	2.3	3
18	Convergent molecular evolution among ash species resistant to the emerald ash borer. Nature Ecology and Evolution, 2020, 4, 1116-1128.	7.8	26

#	Article	IF	CITATIONS
19	The Origin of Novel Genes. Inference, 2020, 5, .	0.0	0
20	Estimating mortality rates of European ash (<i>Fraxinus excelsior</i>) under the ash dieback (<i>Hymenoscyphus fraxineus</i>) epidemic. Plants People Planet, 2019, 1, 48-58.	3.3	87
21	Population structure of Betula albosinensis and Betula platyphylla: evidence for hybridization and a cryptic lineage. Annals of Botany, 2019, 123, 1179-1189.	2.9	28
22	Genomic basis of European ash tree resistance to ash dieback fungus. Nature Ecology and Evolution, 2019, 3, 1686-1696.	7.8	50
23	Repeated long-distance dispersal and convergent evolution in hazel. Scientific Reports, 2019, 9, 16016.	3.3	8
24	Mitigating pest and pathogen impacts using resistant trees: a framework and overview to inform development and deployment in Europe and North America. Forestry, 2018, 91, 1-16.	2.3	25
25	Genetic diversity maintained among fragmented populations of a tree undergoing range contraction. Heredity, 2018, 121, 304-318.	2.6	22
26	Genome-wide epigenetic variation among ash trees differing in susceptibility to a fungal disease. BMC Genomics, 2018, 19, 502.	2.8	14
27	The deepening of Darwin's abominable mystery. Nature Ecology and Evolution, 2017, 1, 169.	7.8	15
28	Genome sequence and genetic diversity of European ash trees. Nature, 2017, 541, 212-216.	27.8	166
29	A first assessment of Fraxinus excelsior (common ash) susceptibility to Hymenoscyphus fraxineus (ash) Tj ETQq1 1	l <u>9.</u> 78431	4 ₁ rgBT /Ove
30	Ash leaf metabolomes reveal differences between trees tolerant and susceptible to ash dieback disease. Scientific Data, 2017, 4, 170190.	5.3	13
31	Unidirectional diploid–tetraploid introgression among British birch trees with shifting ranges shown by restriction siteâ€associated markers. Molecular Ecology, 2016, 25, 2413-2426.	3.9	78
32	Emerging Genomics of Angiosperm Trees. Plant Genetics and Genomics: Crops and Models, 2016, , 85-99.	0.3	0
33	Molecular markers for tolerance of European ash (Fraxinus excelsior) to dieback disease identified using Associative Transcriptomics. Scientific Reports, 2016, 6, 19335.	3.3	85
34	Molecular phylogeny and genome size evolution of the genus <i>Betula</i> (Betulaceae). Annals of Botany, 2016, 117, 1023-1035.	2.9	69
35	250 years of hybridization between two biennial herb species without speciation. AoB PLANTS, 2015, 7, plv081.	2.3	6
36	The potential for field studies and genomic technologies to enhance resistance and resilience of British tree populations to pests and pathogens. Forestry, 2015, 88, 27-40.	2.3	17

#	Article	IF	CITATIONS
37	Speciation by genome duplication: Repeated origins and genomic composition of the recently formed allopolyploid species <i>Mimulus peregrinus </i> Evolution; International Journal of Organic Evolution, 2015, 69, 1487-1500.	2.3	72
38	Is the Atkinson discriminant function a reliable method for distinguishing between <i>Betula pendula </i> and <i>B. pubescens </i> (Betulaceae)?. New Journal of Botany, 2014, 4, 90-94.	0.1	11
39	Molecular footprints of the <scp>H</scp> olocene retreat of dwarf birch in <scp>B</scp> ritain. Molecular Ecology, 2014, 23, 2771-2782.	3.9	45
40	The legacy of diploid progenitors in allopolyploid gene expression patterns. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130354.	4.0	111
41	Hybridization and speciation. Journal of Evolutionary Biology, 2013, 26, 229-246.	1.7	1,735
42	Genome sequence of dwarf birch (<i>Betula nana</i>) and crossâ€species <scp>RAD</scp> markers. Molecular Ecology, 2013, 22, 3098-3111.	3.9	132
43	Unravelling gene expression of complex crop genomes. Heredity, 2013, 110, 97-98.	2.6	17
44	Nextâ€generation sequencing and genome evolution in allopolyploids. American Journal of Botany, 2012, 99, 372-382.	1.7	77
45	Monkeying around with ploidy. Molecular Ecology, 2012, 21, 5159-5161.	3.9	7
46	The Early Stages of Polyploidy: Rapid and Repeated Evolution in Tragopogon. , 2012, , 271-292.		36
47	Rapid, Repeated, and Clustered Loss of Duplicate Genes in Allopolyploid Plant Populations of Independent Origin. Current Biology, 2012, 22, 248-252.	3.9	159
48	Biosystematic relationships and the formation of polyploids. Taxon, 2011, 60, 324-332.	0.7	28
49	Transcriptomic Shock Generates Evolutionary Novelty in a Newly Formed, Natural Allopolyploid Plant. Current Biology, 2011, 21, 551-556.	3.9	192
50	Tissueâ€specific silencing of homoeologs in natural populations of the recent allopolyploid <i>Tragopogon mirus</i> . New Phytologist, 2010, 186, 175-183.	7.3	108
51	Characterization of duplicate gene evolution in the recent natural allopolyploid <i>Tragopogon miscellus</i> by nextâ€generation sequencing and Sequenom iPLEX MassARRAY genotyping. Molecular Ecology, 2010, 19, 132-146.	3.9	167
52	What we still don't know about polyploidy. Taxon, 2010, 59, 1387-1403.	0.7	300
53	Synthetic polyploids of <i>Tragopogon miscellus</i> and <i>T. mirus</i> (Asteraceae): 60 Years after Ownbey's discovery. American Journal of Botany, 2009, 96, 979-988.	1.7	70
54	Does hybridization between divergent progenitors drive wholeâ€genome duplication?. Molecular Ecology, 2009, 18, 3334-3339.	3.9	49

#	Article	IF	CITATIONS
55	Gene loss and silencing in Tragopogon miscellus (Asteraceae): comparison of natural and synthetic allotetraploids. Heredity, 2009, 103, 73-81.	2.6	138
56	On the Origins of Species: Does Evolution Repeat Itself in Polyploid Populations of Independent Origin?. Cold Spring Harbor Symposia on Quantitative Biology, 2009, 74, 215-23.	1.1	20
57	Towards natural polyploid model organisms. Molecular Ecology, 2008, 17, 1875-1876.	3.9	7
58	Does Phylogenetic Distance Between Parental Genomes Govern the Success of Polyploids. Castanea, 2008, 73, 74-93.	0.1	43
59	Empirical study of hybrid zone movement. Heredity, 2007, 99, 301-312.	2.6	297
60	ECOLOGICAL DIFFERENTIATION AND DIPLOID SUPERIORITY ACROSS A MOVING PLOIDY CONTACT ZONE. Evolution; International Journal of Organic Evolution, 2007, 61, 125-140.	2.3	107
61	HYBRIDIZATION, POLYPLOIDY, AND THE EVOLUTION OF SEXUAL SYSTEMS IN MERCURIALIS (EUPHORBIACEAE). Evolution; International Journal of Organic Evolution, 2006, 60, 1801-1815.	2.3	83
62	Rapid Displacement of a Monoecious Plant Lineage Is Due to Pollen Swamping by a Dioecious Relative. Current Biology, 2006, 16, 996-1000.	3.9	69
63	HYBRIDIZATION, POLYPLOIDY, AND THE EVOLUTION OF SEXUAL SYSTEMS IN MERCURIALIS (EUPHORBIACEAE). Evolution; International Journal of Organic Evolution, 2006, 60, 1801.	2.3	5
64	Hybridization, polyploidy, and the evolution of sexual systems in Mercurialis (Euphorbiaceae). Evolution; International Journal of Organic Evolution, 2006, 60, 1801-15.	2.3	21
65	Development of anonymous cDNA microarrays to study changes to the Senecio floral transcriptome during hybrid speciation. Molecular Ecology, 2005, 14, 2493-2510.	3.9	106
66	Polyploidy and the sexual system: what can we learn from Mercurialis annua?. Biological Journal of the Linnean Society, 2004, 82, 547-560.	1.6	121
67	Next generation apomorphy: the ubiquity of taxonomically restricted genes. , 0, , 237-263.		O