Richard Buggs

List of Publications by Year in descending order

Source: https:/|exaly.com/author-pdf/9333764/publications.pdf
Version: 2024-02-01

1 Hybridization and speciation. Journal of Evolutionary Biology, 2013, 26, 229-246.
1.7
1,735

2 What we still don't know about polyploidy. Taxon, 2010, 59, 1387-1403.
0.7

300

3 Empirical study of hybrid zone movement. Heredity, 2007, 99, 301-312.
2.6

297

4 Transcriptomic Shock Generates Evolutionary Novelty in a Newly Formed, Natural Allopolyploid
Plant. Current Biology, 2011, 21, 551-556.
3.9192

Characterization of duplicate gene evolution in the recent natural allopolyploid <i> Tragopogon
5 miscellus</i> by nextấgeneration sequencing and Sequenom iPLEX MassARRAY genotyping. Molecular
$3.9 \quad 167$
Ecology, 2010, 19, 132-146.
$6 \quad$ Genome sequence and genetic diversity of European ash trees. Nature, 2017, 541, 212-216.
27.8

166

7 Rapid, Repeated, and Clustered Loss of Duplicate Genes in Allopolyploid Plant Populations of
7 Independent Origin. Current Biology, 2012, 22, 248-252.
3.9

159
$8 \quad$ Gene loss and silencing in Tragopogon miscellus (Asteraceae): comparison of natural and synthetic allotetraploids. Heredity, 2009, 103, 73-81.
2.6

138

9 Genome sequence of dwarf birch (<i>Betula nana</i>) and crossấspecies <scp>RAD</scp> markers.
9 Molecular Ecology, 2013, 22, 3098-3111.

10 Polyploidy and the sexual system: what can we learn from Mercurialis annua?. Biological Journal of the Linnean Society, 2004, 82, 547-560.
1.6

121

> 11 The legacy of diploid progenitors in allopolyploid gene expression patterns. Philosophical
> Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130354.
$4.0 \quad 111$

Tissueâ€specific silencing of homoeologs in natural populations of the recent allopolyploid <i>Tragopogon mirus</i>. New Phytologist, 2010, 186, 175-183.

13 ECOLOGICAL DIFFERENTIATION AND DIPLOID SUPERIORITY ACROSS A MOVING PLOIDY CONTACT ZONE.
13 ECOLOGICAL DIFFERENTIATION AND DIPLOID SUPERIORITY ACROSS A MOVING PLOIDY CONTACT ZONE.

Development of anonymous cDNA microarrays to study changes to the Senecio floral transcriptome
3.9

106 during hybrid speciation. Molecular Ecology, 2005, 14, 2493-2510.
7.3

108
12
$2.3 \quad 107$

14

Estimating mortality rates of European ash (<i>Fraxinus excelsior</i>) under the ash dieback
3.3

87
15 (<i>Hymenoscyphus fraxineus</i>) epidemic. Plants People Planet, 2019, 1, 48-58.

Molecular markers for tolerance of European ash (Fraxinus excelsior) to dieback disease identified
3.3

85
using Associative Transcriptomics. Scientific Reports, 2016, 6, 19335.

HYBRIDIZATION, POLYPLOIDY, AND THE EVOLUTION OF SEXUAL SYSTEMS IN MERCURIALIS (EUPHORBIACEAE).
Evolution; International Journal of Organic Evolution, 2006, 60, 1801-1815.
2.3 83

19	Nextâ€generation sequencing and genome evolution in allopolyploids. American Journal of Botany, 2012, 99, 372-382.	1.7	77
20	Speciation by genome duplication: Repeated origins and genomic composition of the recently formed allopolyploid species<i>Mimulus peregrinus</i>. Evolution; International Journal of Organic Evolution, 2015, 69, 1487-1500.	2.3	72
21	Synthetic polyploids of <i> Tragopogon miscellus</i> and <i>T. mirus</i> (Asteraceae): 60 Years after Ownbey's discovery. American Journal of Botany, 2009, 96, 979-988.	1.7	70
22	Rapid Displacement of a Monoecious Plant Lineage Is Due to Pollen Swamping by a Dioecious Relative. Current Biology, 2006, 16, 996-1000.	3.9	69
23	Molecular phylogeny and genome size evolution of the genus<i> Betula</i> (Betulaceae). Annals of Botany, 2016, 117, 1023-1035.	2.9	69
24	Genomic basis of European ash tree resistance to ash dieback fungus. Nature Ecology and Evolution, 2019, 3, 1686-1696.	7.8	50
25	Does hybridization between divergent progenitors drive wholeâ€genome duplication?. Molecular Ecology, 2009, 18, 3334-3339.	3.9	49
26	Molecular footprints of the <scp> $\mathrm{H}</ \mathrm{scp}>$ olocene retreat of dwarf birch in $\langle\mathrm{scp}\rangle \mathrm{B}</ \mathrm{scp}\rangle$ ritain. Molecular Ecology, 2014, 23, 2771-2782.	3.9	45
27	Does Phylogenetic Distance Between Parental Genomes Govern the Success of Polyploids. Castanea, 2008, 73, 74-93.	0.1	43

Genomic assessment of local adaptation in dwarf birch to inform assisted gene flow. Evolutionary
Applications, 2020, 13, 161-175.
29 The Early Stages of Polyploidy: Rapid and Repeated Evolution in Tragopogon. , 2012, , 271-292.36

A chromosomeâ€scale genome assembly of European hazel (<i>Corylus avellana</i>ÂL.) reveals targets
30 for crop improvement. Plant Journal, 2021, 105, 1413-1430.
5.7

32

31 Biosystematic relationships and the formation of polyploids. Taxon, 2011, 60, 324-332.

0.7

28

Population structure of Betula albosinensis and Betula platyphylla: evidence for hybridization and a
2.9

28 cryptic lineage. Annals of Botany, 2019, 123, 1179-1189.

Resolving phylogeny and polyploid parentage using genus-wide genome-wide sequence data from birch
trees. Molecular Phylogenetics and Evolution, 2021, 160, 107126.
$2.7 \quad 26$

Convergent molecular evolution among ash species resistant to the emerald ash borer. Nature
Ecology and Evolution, 2020, 4, 1116-1128.
7.8

26

Mitigating pest and pathogen impacts using resistant trees: a framework and overview to inform
development and deployment in Europe and North America. Forestry, 2018, 91, 1-16.
2.3

25

Heredity, 2018, 121, 304-318.
Hybridization, polyploidy, and the evolution of sexual systems in Mercurialis (Euphorbiaceae).
Evolution; International Journal of Organic Evolution, 2006, 60, 1801-15.

$$
\begin{aligned}
& \text { A highâ€quality reference genome for <i> Fraxinus pennsylvanica</i> for ash species restoration and } \\
& \text { research. Molecular Ecology Resources, 2022, 22, 1284-1302. }
\end{aligned}
$$

Is the Atkinson discriminant function a reliable method for distinguishing between<i>Betula
0.1

```
57 Genomic structure and diversity of oak populations in British parklands. Plants People Planet, 2022, 4,
167-181.
3.3 7
59 \begin{tabular}{l}
250 years of hybridization between two biennial herb species without speciation. AoB PLANTS, 2015, 7, \\
plv081.
\end{tabular} 2.3

60 HYBRIDIZATION, POLYPLOIDY, AND THE EVOLUTION OF SEXUAL SYSTEMS IN MERCURIALIS (EUPHORBIACEAE). Evolution; International Journal of Organic Evolution, 2006, 60, 1801.
\begin{tabular}{|c|c|c|c|}
\hline 61 & Introgression between <i>Betula tianshanica<|i> and <i>Betula microphylla</i> and its implications for conservation. Plants People Planet, 2021, 3, 363-374. & 3.3 & 5 \\
\hline 62 & FluentDNA: Nucleotide Visualization of Whole Genomes, Annotations, and Alignments. Frontiers in Genetics, 2020, 11, 292. & 2.3 & 3 \\
\hline 63 & Extraction and high-throughput sequencing of oak heartwood DNA: Assessing the feasibility of genome-wide DNA methylation profiling. PLoS ONE, 2021, 16, e0254971. & 2.5 & 1 \\
\hline
\end{tabular}

64 Reconfiguring Darwinâ \(€^{\mathrm{TM}}\) s abominable mystery. Nature Plants, 2022, 8, 194-195.
9.3

1
65 Emerging Genomics of Angiosperm Trees. Plant Genetics and Genomics: Crops and Models, 2016, , 85-99.```

