Wendy M Mars

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9333641/publications.pdf

Version: 2024-02-01

687363 610901 41 861 13 24 citations h-index g-index papers 41 41 41 1304 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Collagenase pretreatment and the mitogenic effects of hepatocyte growth factor and transforming growth factor-l± in adult rat liver. Hepatology, 1994, 19, 1521-1527.	7.3	125
2	Hepatocyte Growth Factor Modulates Interleukin-6 Production in Bone Marrow Derived Macrophages: Implications for Inflammatory Mediated Diseases. PLoS ONE, 2010, 5, e15384.	2.5	119
3	Immediate early detection of urokinase receptor after partial hepatectomy and its implications for initiation of liver regeneration. Hepatology, 1995, 21, 1695-1701.	7.3	117
4	Synthesis of IL-6 by Hepatocytes Is a Normal Response to Common Hepatic Stimuli. PLoS ONE, 2014, 9, e96053.	2.5	93
5	Combined systemic elimination of MET and epidermal growth factor receptor signaling completely abolishes liver regeneration and leads to liver decompensation. Hepatology, 2016, 64, 1711-1724.	7.3	89
6	Modifications of the hepatocyte growth factor/c-met pathway by constitutive expression of transforming growth factor- \hat{l}_{\pm} in rat liver epithelial cells. Molecular Carcinogenesis, 1997, 18, 244-255.	2.7	37
7	Pharmacologic Inhibition of Epidermal Growth Factor Receptor Suppresses Nonalcoholic Fatty Liver Disease in a Murine Fastâ€Food Diet Model. Hepatology, 2019, 70, 1546-1563.	7.3	37
8	TCPOBOPâ€Induced Hepatomegaly and Hepatocyte Proliferation are Attenuated by Combined Disruption of MET and EGFR Signaling. Hepatology, 2019, 69, 1702-1718.	7.3	36
9	Stressed erythrophagocytosis induces immunosuppression during sepsis through heme-mediated STAT1 dysregulation. Journal of Clinical Investigation, 2021, 131, .	8.2	31
10	The role of hepatic type 1 plasminogen activator inhibitor (PAI-1) during murine hemorrhagic shock. Hepatology, 2005, 42, 390-399.	7.3	26
11	Myeloid-Derived Tissue-Type Plasminogen Activator Promotes Macrophage Motility through FAK, Rac1, and NF-κB Pathways. American Journal of Pathology, 2014, 184, 2757-2767.	3.8	22
12	Combined Systemic Disruption of MET and Epidermal Growth Factor Receptor Signaling Causes Liver Failure in Normal Mice. American Journal of Pathology, 2018, 188, 2223-2235.	3.8	20
13	Hepatitis C Virus Mimics Effects of Glypican-3 on CD81 and Promotes Development of Hepatocellular Carcinomas via Activation of Hippo Pathway in Hepatocytes. American Journal of Pathology, 2018, 188, 1469-1477.	3.8	18
14	Collagenase pretreatment and the mitogenic effects of hepatocyte growth factor and transforming growth factor- \hat{l}_{\pm} in adult rat liver. Hepatology, 1994, 19, 1521-1527.	7.3	15
15	Phosphorylated Ezrin (Thr567) Regulates Hippo Pathway and Yes-Associated Protein (Yap) in Liver. American Journal of Pathology, 2020, 190, 1427-1437.	3.8	14
16	Yesâ€Associated Protein Is Crucial for Constitutive Androstane Receptorâ€Driven Hepatocyte Proliferation But Not for Induction of Drug Metabolism Genes in Mice. Hepatology, 2021, 73, 2005-2022.	7.3	13
17	Activation of hepatocyte growth factor by urokinase-type plasminogen activator is ionic strength-dependent. Biochemical Journal, 2005, 390, 311-315.	3.7	12
18	A Noncanonical Role for Plasminogen Activator Inhibitor Type 1 in Obesity-Induced Diabetes. American Journal of Pathology, 2019, 189, 1413-1422.	3.8	11

#	Article	IF	Citations
19	Tissue-type plasminogen activator suppresses activated stellate cells through low-density lipoprotein receptor-related protein 1. Laboratory Investigation, 2015, 95, 1117-1129.	3.7	8
20	Integrin Linked Kinase (ILK) and its Role in Liver Pathobiology. Gene Expression, 2021, 20, 201-207.	1.2	7
21	Doseâ€dependent biphasic effects of phenobarbital on growth and differentiation of primary culture rat hepatocytes. Journal of Gastroenterology and Hepatology (Australia), 1998, 13, S78-S82.	2.8	6
22	Lymphocyte-Specific Protein-1 Controls Sorafenib Sensitivity and Hepatocellular Proliferation through Extracellular Signal-Regulated KinaseÂ1/2 Activation. American Journal of Pathology, 2018, 188, 2074-2086.	3.8	2
23	Lymphocyte-Specific Protein-1 Suppresses Xenobiotic-Induced Constitutive Androstane Receptor and Subsequent Yes-Associated Protein–Activated Hepatocyte Proliferation. American Journal of Pathology, 2022, 192, 887-903.	3.8	2
24	GPC3â€CD81 axis in the HCV mediated liver carcinogenesis. FASEB Journal, 2015, 29, 611.9.	0.5	1
25	HGFâ€mediated control of ILâ€6 production in primary rat hepatocyte cultures. FASEB Journal, 2007, 21, A1151.	0.5	0
26	Integrinâ€inked kinase KO mice display abnormal liver histology and hepatomegaly following partial hepatectomy. FASEB Journal, 2008, 22, 465.9.	0.5	0
27	Investigation of the Role of Glypican 3 in Rat Hepatocyte Growth and Liver Regeneration. FASEB Journal, 2008, 22, 1124.2.	0.5	0
28	Liver Specific Ablation of Integrin Linked Kinase in Mice Results in Enhanced and Prolonged cell proliferation After Phenobarbital Administration. FASEB Journal, 2009, 23, 117.7.	0.5	0
29	Investigation of the Role of Glypican 3 in Liver Regeneration and Hepatocyte Proliferation. FASEB Journal, 2010, 24, 39.1.	0.5	0
30	Hepatocyteâ€targeted Overexpresssion of Glypican 3 in Mice Suppresses Hepatocyte Proliferation and Hepatomegaly after Phenobarbital Administration. FASEB Journal, 2011, 25, 998.6.	0.5	0
31	Role of IPP (Integrin linked kinaseâ€Parvinâ€Pinch) complex in regulating hepatocyte survival and liver size. FASEB Journal, 2011, 25, 115.5.	0.5	O
32	Role of PINCH in regulating liver size and termination of liver regeneration. FASEB Journal, 2012, 26, 274.8.	0.5	0
33	Regulation of liver growth by Glypican 3, CD81, Hedgehog, and Hhex. FASEB Journal, 2013, 27, 872.3.	0.5	0
34	Rsuâ€1 (Ras suppressor protein 1) ―A potential tumor suppressor in Hepatocellular Carcinoma. FASEB Journal, 2013, 27, 387.10.	0.5	0
35	Regulation of hepatic stellate cell activation through LRP1: a novel signaling role for tâ€PA in liver. FASEB Journal, 2013, 27, 387.4.	0.5	0
36	PINCHâ€Rsuâ€1 complex in regulating liver size and tumorigenesis (144.6). FASEB Journal, 2014, 28, 144.6.	0.5	O

3

#	Article	IF	CITATIONS
37	Glypican 3 (GPC3)â€CD81 axis regulates Ezrin mediated Hippo pathway via cross talking with HGF/câ€Met axis in hepatocytes and hepatocellular carcinoma (HCC). FASEB Journal, 2018, 32, lb573.	0.5	0
38	Lymphocyte Specific Proteinâ€1 Suppresses Hepatocarcinogenesis Driven by Mutant βâ€catenin and Met Overexpression. FASEB Journal, 2019, 33, 126.11.	0.5	0
39	"Conditional Deletion of Hepatocellular Integrin Linked Kinase (hILK) Promotes an Increase in Hepatic Phosphoinositide 3â€kinase delta (PIK3CÎ)― FASEB Journal, 2019, 33, 662.71.	0.5	O
40	Hepatocyteâ€specific YAP deletion suppresses hepatocyte proliferation and hepatomegaly induced by CAR agonist, TCPOBOP (1,4â€Bis [2â€(3,5â€Dichloropyridyloxy)] benzene), in mice. FASEB Journal, 2019, 33, 662.72.	0.5	0
41	Inhibition of Phosphoinositide 3â€kinase delta (PIK3CD) Suppresses Hepatocyte Proliferation by More than 50% in the Regenerating Liver after Partial Hepatectomy. FASEB Journal, 2022, 36, .	0.5	0