Martin Kotora

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9332021/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Regio- and stereoselective synthesis of γ-alkylidenebutenolides and related compounds. Tetrahedron, 1997, 53, 6707-6738.	1.9	235
2	Cycloaddition Reaction of Zirconacyclopentadienes to Alkynes:Â Highly Selective Formation of Benzene Derivatives from Three Different Alkynes. Journal of the American Chemical Society, 1998, 120, 1672-1680.	13.7	190
3	Selective Preparation of Pyridines, Pyridones, and Iminopyridines from Two Different Alkynes via Azazirconacycles. Journal of the American Chemical Society, 2002, 124, 5059-5067.	13.7	182
4	Rhodium-Catalyzed C-C Bond Cleavage Reactions. Current Organic Chemistry, 2007, 11, 1566-1591.	1.6	156
5	Copper-Mediated Coupling of Zirconacyclopentadienes with Dihalo Aromatic Compounds. Formation of Fused Aromatic Rings. Journal of the American Chemical Society, 1996, 118, 5154-5155.	13.7	149
6	Carbonâ^'Carbon Bond Formation Reaction of Zirconacyclopentadienes with Alkynes in the Presence of Ni(II)-complexes. Journal of the American Chemical Society, 1999, 121, 11093-11100.	13.7	123
7	On the Mechanism of Asymmetric Allylation of Aldehydes with Allyltrichlorosilanes Catalyzed by QUINOX, a Chiral Isoquinoline <i>N</i> -Oxide. Journal of the American Chemical Society, 2008, 130, 5341-5348.	13.7	121
8	Coupling Reaction of Zirconacyclopentadienes with Dihalonaphthalenes and Dihalopyridines:  A New Procedure for the Preparation of Substituted Anthracenes, Quinolines, and Isoquinolines. Journal of the American Chemical Society, 2002, 124, 576-582.	13.7	118
9	Carbon–Carbon Bond Cleavage and Selective Transformation of Zirconacycles. Bulletin of the Chemical Society of Japan, 1999, 72, 2591-2602.	3.2	116
10	Selective Formation of Substituted Pyridines from Two Different Alkynes and a Nitrile:Â Novel Coupling Reaction of Azazirconacyclopentadienes with Alkynes. Journal of the American Chemical Society, 2000, 122, 4994-4995.	13.7	111
11	Direct Synthesis of Terminal AlkynesviaPd-Catalyzed Cross Coupling of Aryl and Alkenyl Halides with Ethynylmetals Containing Zn, Mg, and Sn. Critical Comparison of Countercations. Journal of Organic Chemistry, 1997, 62, 8957-8960.	3.2	97
12	Catalytic Deallylation of Allyl- and Diallylmalonates. Journal of the American Chemical Society, 2004, 126, 10222-10223.	13.7	89
13	Rhodium-catalyzed C-C Bond Cleavage Reactions - An Update. Current Organic Chemistry, 2012, 16, 1170-1214.	1.6	89
14	Cycloaddition of zirconacyclopentadienes to alkynes using copper salts: formation of benzene derivatives. Journal of the Chemical Society Chemical Communications, 1995, , 361.	2.0	83
15	Novel Syntheses of Eight-Membered-Five-Membered Fused-Ring Compounds from Zirconacyclopentadienes. Organometallics, 1994, 13, 4183-4185.	2.3	77
16	New pyridine N-oxides as chiral organocatalysts in the asymmetric allylation of aromatic aldehydes. Tetrahedron, 2008, 64, 11335-11348.	1.9	77
17	Oxidative Addition of 2-Haloalkene to Zirconocene. Journal of the American Chemical Society, 1995, 117, 11039-11040.	13.7	66
18	New Pathway to <i>C</i> ₂ ‣ymmetric Atropoisomeric Bipyridine <i>N</i> , <i>N′</i> â€Dioxides and Solvent Effect in Enantioselective Allylation of Aldehydes. Advanced Synthesis and Catalysis, 2008, 350, 1449-1456.	4.3	66

#	Article	IF	CITATIONS
19	Simple and Fast Synthesis of New Axially Chiral Bipyridine <i>N,N′</i> â€Dioxides for Highly Enantioselective Allylation of Aldehydes. Advanced Synthesis and Catalysis, 2009, 351, 1279-1283.	4.3	65
20	Copper catalyzed Cî—C bond formation reaction of allylzirconation products of alkynes. Tetrahedron Letters, 1994, 35, 5685-5688.	1.4	62
21	Novel type of carbozirconation reaction of alkynes. Tetrahedron, 1995, 51, 4519-4540.	1.9	56
22	A Simple Approach to Unsymmetric Atropoisomeric BipyridineN,N′-Dioxides and Their Application in Enantioselective Allylation of Aldehydes. Advanced Synthesis and Catalysis, 2007, 349, 822-826.	4.3	56
23	Synthesis of C-Aryldeoxyribosides by [2 + 2 + 2]-Cyclotrimerization Catalyzed by Rh, Ni, Co, and Ru Complexes. Organic Letters, 2006, 8, 2051-2054.	4.6	54
24	Medicinal applications of perfluoroalkylated chain-containing compounds. Future Medicinal Chemistry, 2014, 6, 1201-1229.	2.3	54
25	Cross coupling-conjugate addition reaction of zirconacyclopentadienes with 3-iodopropenoates. Tetrahedron Letters, 1998, 39, 4321-4324.	1.4	50
26	Lewis Base Catalyzed Enantioselective Allylation of α,βâ€Unsaturated Aldehydes. Chemistry - A European Journal, 2010, 16, 9442-9445.	3.3	50
27	Synthesis of telechelic dienes from fluorinated α,ï‰-diiodoalkanes. Part I. Divinyl and diallyl derivatives from model I(C2F4)nI compounds. Journal of Fluorine Chemistry, 1995, 73, 151-158.	1.7	49
28	Palladium-Catalyzed Coupling of Two Alkynes and an Alkenyl Iodide:  Formation of Pentasubstituted Fulvenes. Organic Letters, 2001, 3, 3467-3470.	4.6	49
29	An easy route to atropoisomeric bipyridine N,N′-dioxides and allylation of aldehydes. Tetrahedron: Asymmetry, 2006, 17, 3185-3191.	1.8	49
30	Copper-Catalyzed Intermolecular [4+4] and [4+5] Coupling of Zirconacyclopentadienes with Bis(halomethyl)arenes:Â A New Pathway to Eight- and Nine-Membered Ring Derivatives. Organometallics, 1998, 17, 3841-3843.	2.3	47
31	Preparation of 1,2,3-trisubstituted cyclopentadienes and tetrahydroindene derivatives from zirconacyclopentenes. Tetrahedron Letters, 1996, 37, 7521-7524.	1.4	45
32	Copper-catalyzed addition of perfluoroalkyl iodides to unsaturated alcohols and transformation of the addition products. Journal of Fluorine Chemistry, 1994, 68, 49-56.	1.7	44
33	Crossâ€Coupling Reaction of Saccharideâ€Based Alkenyl Boronic Acids with Aryl Halides: The Synthesis of Bergenin. Chemistry - A European Journal, 2014, 20, 4414-4419.	3.3	44
34	Chemoselective carbon–carbon bond formation reactions of zirconacyclopentenes. Journal of the Chemical Society Chemical Communications, 1995, , 109-110.	2.0	42
35	Fe-Catalyzed reactions of 2-chloro-1,7-dienes and allylmalonates. Tetrahedron Letters, 2007, 48, 4539-4541.	1.4	42
36	Neutral and ionic reaction mechanisms for the allylation of aldehydes by bipyridine N,N′-dioxides. Chemical Communications, 2009, , 2314.	4.1	42

#	Article	IF	CITATIONS
37	Inter- or Intramolecular Carbometalation of Nonactivated Alkynes by Zirconacyclopentanes in the Presence of Copper Chloride. Angewandte Chemie - International Edition, 1999, 38, 949-952.	13.8	41
38	A Novel Bifunctional Allyldisilane as a Triple Allylation Reagent in the Stereoselective Synthesis of Trisubstituted Tetrahydrofurans. Chemistry - A European Journal, 2011, 17, 7162-7166.	3.3	41
39	Synthesis of Aromatic Compounds by Catalytic Cĩ£¿C Bond Activation of Biphenylene or Angular [3]Phenylene. Chemistry - A European Journal, 2012, 18, 4200-4207.	3.3	41
40	Rhodium-Catalyzed Deallylation of Allylmalonates and Related Compounds. Organometallics, 2006, 25, 901-907.	2.3	40
41	Efficient and diastereoselective synthesis of (+)-Goniobutenolide A via palladium-catalyzed ene-yne cross coupling-lactonization cascade. Tetrahedron Letters, 1996, 37, 9041-9042.	1.4	39
42	Copper-Catalyzed or Mediated Carbon-Carbon Bond Formation Reactions of Zirconacycles and Alkenylzirconocenes Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 1997, 55, 958-969.	0.1	39
43	Specific Inhibitors of HIV Capsid Assembly Binding to the C-Terminal Domain of the Capsid Protein: Evaluation of 2-Arylquinazolines as Potential Antiviral Compounds. Journal of Medicinal Chemistry, 2016, 59, 545-558.	6.4	39
44	Highly chemoselective cobalt-catalyzed biaryl coupling reactions. Chemical Science, 2013, 4, 776-784.	7.4	38
45	Direct Synthesis of Heteroarylethynes via Palladium-catalyzed Coupling of Heteroaryl Halides with EthynylzincHalides. Its Application to an Efficient Synthesis of a Thiophenelactone from Chamaemelum nobile L Heterocycles, 1997, 46, 209.	0.7	36
46	Reaction of Zirconacycles with 3-Iodopropenoates and 3-Iodocycloenones in the Presence of CuCl:Â A New Pathway for the Formation of Cyclopentadienes and Spirocyclic Compounds. Journal of Organic Chemistry, 2000, 65, 945-950.	3.2	36
47	Iron-Catalyzed Transformations of 2-Chloro-1,6-heptadienes. European Journal of Organic Chemistry, 2004, 1280-1285.	2.4	36
48	Synthesis of atropoisomeric pyridines via cobalt-catalyzed cocyclotrimerization of diynes with benzonitrile. Tetrahedron, 2006, 62, 968-976.	1.9	36
49	Synthesis of Fluorinated Brassinosteroids Based on Alkene Cross-Metathesis and Preliminary Biological Assessment. Journal of Medicinal Chemistry, 2009, 52, 5753-5757.	6.4	34
50	Co- and homocyclotrimerization reactions of protected 1-alkynyl-2-deoxyribofuranose. Synthesis of C-nucleosides, C-di- and C-trisaccharide analogues. Tetrahedron, 2008, 64, 5200-5207.	1.9	32
51	A [2+2+2]â€Cyclotrimerization Approach to Selectively Substituted Fluorenes and Fluorenols, and Their Conversion to 9,9′â€Spirobifluorenes. Chemistry - A European Journal, 2015, 21, 13577-13582.	3.3	32
52	Reaction of oxazirconacyclopentenes with propynoates. A new pathway for the formation of 2,5-dihydrofuran derivatives. Tetrahedron Letters, 1999, 40, 2375-2378.	1.4	31
53	Cocyclotrimerization of 6-Alkynylpurines with α,ï‰-Diynes as a Novel Approach to Biologically Active 6-Arylpurines. Journal of Organic Chemistry, 2004, 69, 9224-9233.	3.2	31
54	On-Surface Strain-Driven Synthesis of Nonalternant Non-Benzenoid Aromatic Compounds Containing Four- to Eight-Membered Rings. Journal of the American Chemical Society, 2021, 143, 14694-14702.	13.7	31

#	Article	IF	CITATIONS
55	Nickel-catalyzed cyclization of α,ï‰-dienes: formation vs. cleavage of C–C bonds. New Journal of Chemistry, 2006, 30, 671-674.	2.8	30
56	Enantioselective Allylation of Aldehydes Catalyzed by Diastereoisomeric Bis(tetrahydroisoquinoline) <i>N</i> , <i>N</i> ′â€Dioxides. European Journal of Organic Chemistry, 2010, 2010, 7040-7044.	2.4	30
57	Strictly regio- and stereo-controlled α-alkenylation of bicyclic enone derivatives via palladium-catalyzed cross coupling and its application to a formal synthesis of (±)-carbacyclin. Tetrahedron, 1998, 54, 7057-7074.	1.9	29
58	[2+2+2]-Co-cyclotrimerization 6-alkynylpurines with diynes: a method for preparation of 6-arylpurines. Tetrahedron Letters, 2003, 44, 785-788.	1.4	29
59	Synthesis of Sterically Hindered Biaryls by Zr-Mediated Co-cyclotrimerization of Alkynes. European Journal of Organic Chemistry, 2005, 2005, 2491-2499.	2.4	29
60	Ring Opening of Methylenecycloalkenes via the Câ^'C Bond Cleavage. Organic Letters, 2008, 10, 5261-5263.	4.6	29
61	1,1-Cycloaddition of zirconacyclopentadienes to propynoates. Chemical Communications, 1997, , 2069-2070.	4.1	28
62	A Ruthenium Complexâ€Catalyzed Cyclotrimerization of Halodiynes with Nitriles. Synthesis of 2―and 3â€Halopyridines. Advanced Synthesis and Catalysis, 2016, 358, 1916-1923.	4.3	28
63	Highly regioselective reaction of zirconocene-alkene complexes with aldehydes or ketones. Journal of Organometallic Chemistry, 1994, 473, 117-128.	1.8	27
64	Synthesis and Biochemical Characterization of a Series of 17α-Perfluoroalkylated Estradiols as Selective Ligands for Estrogen Receptor α. Journal of Medicinal Chemistry, 2010, 53, 6947-6953.	6.4	27
65	Rearrangement of 2-iodo-3-perfluoroalkyl-1-propyl acetates to 1-iodo-3-perfluoroalkyl-2-propyl acetates. Journal of Fluorine Chemistry, 1993, 64, 259-267.	1.7	26
66	Preparation of Diynes via Selective Bisalkynylation of Zirconacycles. Journal of Organic Chemistry, 2000, 65, 6951-6957.	3.2	26
67	Synthesis of Diferrocenylethyne by Molybdenum-Catalyzed Metathesis of 1-Ferrocenylprop-1-yne. Collection of Czechoslovak Chemical Communications, 2003, 68, 1897-1903.	1.0	26
68	Mo atalyzed Crossâ€Metathesis Reaction of Propynylferrocene. European Journal of Inorganic Chemistry, 2008, 2008, 3911-3920.	2.0	26
69	Preparation of Sn-, Ge-, and Si-Heterocycles from Zirconacycles. Heterocycles, 2000, 52, 1171.	0.7	26
70	Halogen-dependent coupling reaction of alkynes with (Z)-3-halopropenoates catalyzed by nickel. Tetrahedron, 1999, 55, 4969-4978.	1.9	25
71	Oxygen Superbases as Polar Binding Pockets in Nonpolar Solvents. Journal of the American Chemical Society, 2010, 132, 12660-12667.	13.7	25
72	Transitionâ€Metalâ€Mediated or â€Catalyzed Syntheses of Steroids and Steroidâ€Like Compounds. European Journal of Organic Chemistry, 2012, 2012, 29-42.	2.4	25

#	Article	IF	CITATIONS
73	Preparation of Highly Substituted 6-Arylpurine Ribonucleosides by Ni-Catalyzed Cyclotrimerization. Scope of the Reaction. Journal of Organic Chemistry, 2006, 71, 8978-8981.	3.2	24

Formation of a five-membered carbocyclic ring by reaction of zirconacyclopentane with RCOCl (R =) Tj ETQq0 0 0 rgBT /Overlock 10 Tf $\frac{2}{23}$

75	Perfluoroalkylation through Crossâ€Metathesis between Alkenes and (Perfluoroalkyl)propenes. European Journal of Organic Chemistry, 2008, 2008, 4493-4499.	2.4	23
76	Tandem inter-intramolecular allylation of zirconacyclopentadienes: Pathway to vinylcyclohexadienes and methylenecycloheptadienes. Tetrahedron Letters, 1997, 38, 8355-8358.	1.4	22
77	Direct Addition of Zrâ^C Bonds of Alkylzirconocenes to Activated Alkenes. Journal of Organic Chemistry, 2002, 67, 7019-7028.	3.2	22
78	Synthesis of Mono(perfluoroalkyl) Cyclodextrins via Cross Metathesis. European Journal of Organic Chemistry, 2010, 2010, 6256-6262.	2.4	22
79	Dodecyl Amino Glucoside Enhances Transdermal and Topical Drug Delivery via Reversible Interaction with Skin Barrier Lipids. Pharmaceutical Research, 2017, 34, 640-653.	3.5	22
80	Substituent-Dependent Selective Replacement of Alkyne Moieties of ZirconacyclopentadienesviaC-C Bond Cleavage Reaction. Chemistry Letters, 1996, 25, 1003-1004.	1.3	21
81	Cobaltâ€Induced Synthesis of 6â€(Pyridinâ€2â€yl)purines by Microwaveâ€Enhanced [2+2+2] Cyclotrimerization. European Journal of Organic Chemistry, 2008, 2008, 3335-3343.	2.4	21
82	Synthesis of axially chiral bipyridine N,N'-dioxides and enantioselective allylation of aldehydes. Pure and Applied Chemistry, 2010, 82, 1813-1826.	1.9	21
83	Zirconium mediated or catalysed highly stereoselective cyclization of 1,4,7-trienes. Journal of the Chemical Society Chemical Communications, 1994, , 2693.	2.0	20
84	Synthesis of 1,2-Disubstituted Cyclopentadienes from Alkynes Using a Catalytic Haloallylation/Cross-Coupling/Metathesis Relay. Organic Letters, 2016, 18, 3634-3637.	4.6	20
85	Copper(I)-catalyzed tandem inter–intramolecular cyclization reactions of zirconacycles: formation of highly substituted styrenes, vinylcyclohexadienes, and related compounds. Tetrahedron, 2002, 58, 1107-1117.	1.9	19
86	[2+2+2] Cocyclotrimerization with Ferrocenylalkynes. European Journal of Organic Chemistry, 2003, 2003, 2882-2887.	2.4	19
87	Synthesis of selectively 4-substituted 9,9′-spirobifluorenes and modulation of their photophysical properties. Organic and Biomolecular Chemistry, 2017, 15, 6913-6920.	2.8	19
88	Palladium-Catalyzed Homocoupling of Organic Electrophiles or Organometals. , 0, , 973-993.		18
89	Synthesis of (±)-3-Methoxyestra-1,3,5(10)-trienes by the Repetitive Use of Negishi Reagentâ€. Organic Letters, 2006, 8, 1315-1318.	4.6	18
90	Synthesis and Rearrangement of Dewar Benzenes Into Biaryls: Experimental Evidence for Conrotatory Ring Opening. European Journal of Organic Chemistry, 2008, 2008, 47-51.	2.4	18

#	Article	IF	CITATIONS
91	Formal Total Synthesis of (±)-Estrone and Zirconocene-Promoted Cyclization of 2-Fluoro-1,7-octadienes and Ru-Catalyzed Ring Closing Metathesis. Journal of Organic Chemistry, 2008, 73, 6202-6206.	3.2	18
92	Pyridine N-Oxides and Derivatives Thereof in Organocatalysis. Topics in Heterocyclic Chemistry, 2017, , 29-58.	0.2	18
93	Reaction of Zirconacyclopentadienes with Ethynylferrocenes. Collection of Czechoslovak Chemical Communications, 2004, 69, 351-364.	1.0	17
94	Cross-Cyclotrimerization with Two Nitriles as a Synthetic Pathway to Unsymmetrically 3,3'-Disubstituted bis(Tetrahydroisoquinolines). Molecules, 2009, 14, 2918-2926.	3.8	17
95	Stereoselective Synthesis of Ezetimibe via Cross-Metathesis of Homoallylalcohols and α-Methylidene-β-Lactams. Journal of Organic Chemistry, 2016, 81, 7692-7699.	3.2	17
96	Galactosyl Pentadecene Reversibly Enhances Transdermal and Topical Drug Delivery. Pharmaceutical Research, 2017, 34, 2097-2108.	3.5	17
97	Enantioselective Allylation of Thiopheneâ€2â€carbaldehyde: Formal Total Synthesis of Duloxetine. Advanced Synthesis and Catalysis, 2014, 356, 199-204.	4.3	16
98	Enantioselective Allylation of Selected <i>ortho</i> ‣ubstituted Benzaldehydes: A Comparative Study. European Journal of Organic Chemistry, 2014, 2014, 7245-7252.	2.4	16
99	Enantioselective Allylation of βâ€Haloacrylaldehydes: Formal Total Syntheses of Pteroenone and Antillatoxin. European Journal of Organic Chemistry, 2016, 2016, 2110-2114.	2.4	16
100	Catalyst-Counterion Controlled, Regioselective C–C Bond Cleavage in 1-Azabiphenylene: Synthesis of Selectively Substituted Benzoisoquinolines. ACS Catalysis, 2018, 8, 10290-10299.	11.2	16
101	Addition of tetrachloromethane to halogenated ethenes catalyzed by transition metal complexes. Journal of Molecular Catalysis, 1992, 77, 51-60.	1.2	15
102	Highly regio- and diastereo-selective carbon–carbon bond formation reaction of unsymmetrical zirconacyclopentanes using copper salt. Chemical Communications, 1997, , 1599-1600.	4.1	15
103	Synthesis, Molecular Structure, and Electrochemistry of 1â€Ferrocenylâ€1,2â€dicarbaâ€ <i>closo</i> â€dodecaboranes. European Journal of Inorganic Chemistry, 2013, 2 2789-2798.	01230	15
104	[2+2+2] yclotrimerization of 1 yclopropylâ€1,6â€diynes with Alkynes: Formation of Cyclopropylarenes Advanced Synthesis and Catalysis, 2016, 358, 254-267.	4.3	15
105	Enantioselective Synthesis of the Unsaturated Fragment of Callyspongiolide. Organic Letters, 2016, 18, 5656-5659.	4.6	15
106	Transition-metal-catalyzed methods for synthesis of fluorenes. Tetrahedron, 2019, 75, 2981-2992.	1.9	15
107	Addition of tetrachloromethane to alkenes catalyzed by cobalt(II)-amine complex. Catalysis Letters, 1993, 18, 345-348.	2.6	14
108	Selective mono- and di{(perfluoroalkyl)acylation} of ferrocene. Journal of Fluorine Chemistry, 2003, 124, 177-181.	1.7	14

Martin Kotora

#	Article	IF	CITATIONS
109	Rearrangement of Dewar Benzene Derivatives Studied by DFT. Journal of Organic Chemistry, 2010, 75, 576-581.	3.2	14
110	Modular synthesis of 1-α- and 1-β-(indol-2-yl)-2′-deoxyribose C-nucleosides. Organic and Biomolecular Chemistry, 2011, 9, 5934.	2.8	14
111	Syntheses of a Flobufen Metabolite and Dapoxetine Based on Enantioselective Allylation of Aromatic Aldehydes. European Journal of Organic Chemistry, 2014, 2014, 2543-2548.	2.4	14
112	Sonogashira reactions of α- and β-1-ethynyl-2-deoxyribosides: synthesis of acetylene-extended C-nucleosides. Tetrahedron, 2010, 66, 530-536.	1.9	13
113	Synthesis and Evaluation of 17α-Arylestradiols as Ligands for Estrogen Receptor α and β. Journal of Medicinal Chemistry, 2010, 53, 4290-4294.	6.4	13
114	Sphingosine and clavaminol H derivatives bearing fluorinated chains and their cytotoxic activity. Journal of Fluorine Chemistry, 2012, 141, 49-57.	1.7	13
115	Synthesis of Phenanthridines via a Rhodium-Catalyzed C–C Bond Cleavage Reaction of Biphenylene with Nitriles. Synthesis, 2016, 48, 987-996.	2.3	13
116	Straightforward Synthesis and Properties of Highly Fluorescent [5]―and [7]â€Helical Dispiroindeno[2,1―c]fluorenes. Angewandte Chemie - International Edition, 2019, 58, 17169-17174.	13.8	13
117	Reactions of Zirconacyclopentadienes with Propargyl Halides Leading to (Buta-2,3-dien-1-yl)benzenes. Collection of Czechoslovak Chemical Communications, 1999, 64, 1119-1124.	1.0	12
118	Reaction of (cycloalkenyl)alkylzirconium compounds with alkynes: novel procedure for the formation of bicyclic compounds. Tetrahedron Letters, 2000, 41, 7905-7909.	1.4	12
119	Synthesis and characterisation of Dewar benzene–ferrocene conjugates. Dalton Transactions, 2009, , 3137.	3.3	12
120	Enantioselective Allylation of (2 <i>E</i> ,4 <i>E</i>)â€2,4â€Dimethylhexadienal: Synthesis of (5 <i>R</i> ,6 <i>S</i>)â€(+)â€Pteroenone. Chemistry - A European Journal, 2015, 21, 7408-7412.	3.3	12
121	Synthesis of a Bolm's 2,2′â€Bipyridine Ligand Analogue and Its Applications. Advanced Synthesis and Catalysis, 2018, 360, 2869-2878.	4.3	12
122	Synthesis of Tri- and Disubstituted Fluorenols and Derivatives Thereof Using Catalytic [2+2+2] Cyclotrimerization. Catalysts, 2019, 9, 942.	3.5	12
123	Catalytic Cyclotrimerization Pathway for Synthesis of Selaginpulvilins C and D: Scope and Limitations. Organic Letters, 2021, 23, 4511-4515.	4.6	12
124	Novel Method for Preparation of Highly Substituted 6-Arylpurines by Reactions of 6-Alkynylpurines with Zirconacyclopentadienes. Collection of Czechoslovak Chemical Communications, 2005, 70, 339-349.	1.0	11
125	Enantioselective epoxide ring opening catalyzed by bis(tetrahydroisoquinoline) N,N′-dioxides. Collection of Czechoslovak Chemical Communications, 2011, 76, 415-422.	1.0	11
126	Rhodiumâ€Catalyzed Enantioselective Synthesis of Highly Fluorescent and CPLâ€Active Dispiroindeno[2,1â€ <i>c</i>]fluorenes. Chemistry - A European Journal, 2021, 27, 11279-11284.	3.3	11

#	Article	IF	CITATIONS
127	Synthesis of an (±)â€Estrone Precursor: The Scope of Zr―and Coâ€Mediated Cycloannulations. European Journal of Organic Chemistry, 2010, 2010, 646-655.	2.4	10
128	Cross-metathesis of allylcarboranes with <i>O</i> -allylcyclodextrins. Beilstein Journal of Organic Chemistry, 2010, 6, 1099-1105.	2.2	10
129			

#	Article	IF	CITATIONS
145	Enantioselective Allylation of <i>tert</i> â€Butyldimethylsilylâ€Protected Vanillin and Synthesis of a Lignan Derivative Isolated from <i>Machilus wangchiana</i> . European Journal of Organic Chemistry, 2014, 2014, 7556-7560.	2.4	6
146	A Modular Synthesis of <i>N</i> â€Benzotriazole Ureas Using Alkylation of 5â€Nitrobenzotriazole. ChemistrySelect, 2016, 1, 101-107.	1.5	6
147	Proton Affinities of Organocatalysts Derived from Pyridine N-oxide. Croatica Chemica Acta, 2014, 87, 349-356.	0.4	5
148	Cross-metathesis reaction of \hat{I}_{\pm} - and \hat{I}_{\pm} -vinyl C-glycosides with alkenes. Beilstein Journal of Organic Chemistry, 2015, 11, 1392-1397.	2.2	5
149	Rutheniumâ€Catalyzed Crossâ€Metathesis of Allyl Acetate and Styrenes: A Practical Approach to the Synthesis of Tripolinolate A and Its Analogs. European Journal of Organic Chemistry, 2017, 2017, 1736-1739.	2.4	5
150	Synthesis of new bipyridine N,N′-dioxides and their application in asymmetric allylation of benzaldehyde and aldol addition to acetophenone. Monatshefte Für Chemie, 2019, 150, 29-48.	1.8	5
151	Catalyst Effects on the Stereoselectivity of Addition of Tetrachloromethane to 1,3-Cyclohexadiene. Collection of Czechoslovak Chemical Communications, 1996, 61, 774-777.	1.0	5
152	Ni-Catalyzed Homocoupling of 3-Halopropenoates in the Presence of Water: Formation of Hexendioates. Chemistry Letters, 2000, 29, 236-237.	1.3	4
153	Synthesis of 1-Alkanoyl-1'-(trifluoroacetyl)ferrocenes. Collection of Czechoslovak Chemical Communications, 2006, 71, 190-196.	1.0	4
154	Total Synthesis of Coibacinâ€D by Using Enantioselective Allylation and Metathesis Reactions. Asian Journal of Organic Chemistry, 2016, 5, 646-651.	2.7	4
155	Straightforward Synthesis and Properties of Highly Fluorescent [5]―and [7]â€Helical Dispiroindeno[2,1―c]fluorenes. Angewandte Chemie, 2019, 131, 17329-17334.	2.0	4
156	A Study of Polarization and Directing Effects of Unsymmetrical Alkynes Using Regioselective Pdâ€Catalyzed Bromoallylation. European Journal of Organic Chemistry, 2020, 2020, 234-240.	2.4	4
157	A General Synthetic Approach and Photophysical Properties of Regioselectively Fluorinated [5]―and [6]â€Helical Bispiroindenofluorenes. ChemPlusChem, 2020, 85, 2010-2016.	2.8	4
158	Applications of Bolm's Ligand in Enantioselective Synthesis. Molecules, 2020, 25, 958.	3.8	4
159	Highly Enantioselective Ringâ€Opening of <i>mesoâ€</i> Epoxides with O―and <i>Nâ€</i> Nucleophiles Catalyzed by a Chiral Sc(III)/bipyridine Complex. European Journal of Organic Chemistry, 2021, 2021, 1249-1257.	2.4	4
160	Catalytic Asymmetric Allylation of Aliphatic Aldehydes by Chiral Bipyridine <i>N</i> , <i>N</i> ′-Dioxides. Synlett, 2008, 2008, 3141-3144.	1.8	3
161	Synthesis of Substituted Linear Ter- and Quaterphenyls via Dewar Benzenes. Synlett, 2011, 2011, 396-398.	1.8	3
162	Cycloaddition Reactions of Deoxyribosylpropynoates. Synthetic Communications, 2014, 44, 1232-1239.	2.1	3

#	Article	IF	CITATIONS
163	Reaction of Bicyclic Zirconacyclopentenes with Aldehydes and a Potential Pathway to Condensed 5–7–6(Ar) Ring Systems. European Journal of Organic Chemistry, 2015, 2015, 2868-2878.	2.4	3
164	Enantioselective Allylations of Selected α,β,γ,β-Unsaturated Aldehydes by Axially Chiral N,N'-dioxides. Synthesis of the Left-hand Part of Papulacandin D. Current Organocatalysis, 2016, 3, 301-305.	0.5	3
165	Enantioselective Synthesis of the C23–C33 Fragment of Aetheramide A and Its C32 Epimer. European Journal of Organic Chemistry, 2018, 2018, 147-149.	2.4	3
166	Addition of Tetrachloromethane to 1,5-Hexadiene. Collection of Czechoslovak Chemical Communications, 1992, 57, 393-396.	1.0	3
167	Extension of the Library of Biologically Active γ-Alkylidene Butenolides. Synthesis, 2008, 2008, 3465-3472.	2.3	2
168	Synthesis of trans-Fused Sesquiterpenoid Analogues by Zirconocene-Mediated Metallo-ene Reaction. Synlett, 2009, 2009, 2445-2448.	1.8	2
169	Bisallylation of Zirconacyclopentenes and Ring-Closing Metathesis: A Route to Eight-Membered-Ring Compounds. Synlett, 2016, 27, 432-436.	1.8	2
170	[2+2+2]-Cocyclotrimerization of 6-Alkynyl-7-benzylpurines with α,ï‰-Diynes. Heterocycles, 2010, 82, 895.	0.7	2
171	Synthesis of Perfluoroalkylated Carboranes by Cross-Metathesis of Allylcarboranes and Perfluoroalkylpropenes. Synlett, 2010, 2010, 885-888.	1.8	1
172	Ir-Catalyzed Cycloaddition of Tribenzocyclyne with Biphenylenes. Journal of Organic Chemistry, 2021, ,	3.2	1
173	Cocyclotrimerization of 6-alkynylpurines with diynes as a novel approach to biologically active 6-arylpurines. , 2005, , .		1
174	Computational, Mechanistic, and Experimental Insights into Regioselective Catalytic C–C Bond Activation in Linear 1-Aza-[3]triphenylene. ACS Omega, 2022, 7, 8665-8674.	3.5	1
175	Catalytic approach to unsymmetrical [7]-helical indenofluorenes: Cyclotrimerization vs. dehydro-Diels-Alder reaction pathways. Catalysis Today, 2022, 390-391, 48-56.	4.4	1
176	Direct Addition of Zr—C Bonds of Alkylzirconocenes to Activated Alkenes ChemInform, 2003, 34, no.	0.0	0
177	Zirconocene-Mediated Cyclization and Isomerization of 1,3,6-Heptatriene ChemInform, 2003, 34, no.	0.0	0
178	[2 + 2 + 2]-Co-cyclotrimerization 6-Alkynylpurines with Diynes: A Method for Preparation of 6-Arylpurines ChemInform, 2003, 34, no.	0.0	0
179	Selective Mono- and Di-{(perfluoroalkyl)acylation} of Ferrocene ChemInform, 2004, 35, no.	0.0	0
180	Reaction of Zirconacyclopentadienes with Ethynylferrocenes ChemInform, 2004, 35, no.	0.0	0

#	Article	IF	CITATIONS
181	Iron-Catalyzed Transformations of 2-Chloro-1,6-heptadienes ChemInform, 2004, 35, no.	0.0	0
182	Catalytic Deallylation of Allyl- and Diallylmalonates ChemInform, 2004, 35, no.	0.0	0
183	Cocyclotrimerization of 6-Alkynylpurines with ?,?-Diynes as a Novel Approach to Biologically Active 6-Arylpurines ChemInform, 2005, 36, no.	0.0	0
184	Novel Method for Preparation of Highly Substituted 6-Arylpurines by Reactions of 6-Alkynylpurines with Zirconacyclopentadienes ChemInform, 2005, 36, no.	0.0	0
185	6-Aryl- and 6-Heteroarylpurines via Cyclotrimerization. Nucleic Acids Symposium Series, 2008, 52, 533-534.	0.3	0
186	Front Cover: Enantioselective Synthesis of the C23-C33 Fragment of Aetheramide A and Its C32 Epimer (Eur. J. Org. Chem. 2/2018). European Journal of Organic Chemistry, 2018, 2018, 137-137.	2.4	0
187	Enantioselective Catalytic Crotylboration Based Syntheses of the C7â€C18(20) Fragments of Polyketides Isolated from Streptomyces gramineus. Helvetica Chimica Acta, 0, , e2100170.	1.6	0
188	[2+2+2]-co-Cyclotrimerization of 6-alkynylpurines with diynes: A method for preparation 6-arylpurines. , 2002, , .		0
189	Synthesis of C-arylribosides by catalytic [2+2+2]-cyclotrimerization reaction. , 2005, , .		0
190	New approaches to synthesis of C-deoxyribosides starting from C-alkynyldeoxyribosides. , 2008, , .		0
191	Carboranyl-saccharide Derivatives: Syntheses and Biological Evaluation. , 2018, , 69-99.		Ο