Craig R Roy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9331376/publications.pdf

Version: 2024-02-01

158 12,881 61 108
papers citations h-index g-index

223 223 9094
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	A Bacterial Guanine Nucleotide Exchange Factor Activates ARF on <i>Legionella</i> Phagosomes. Science, 2002, 295, 679-682.	12.6	530
2	Flagellin-Deficient Legionella Mutants Evade Caspase-1- and Naip5-Mediated Macrophage Immunity. PLoS Pathogens, 2006, 2, e18.	4.7	475
3	The Birc1e cytosolic pattern-recognition receptor contributes to the detection and control of Legionella pneumophila infection. Nature Immunology, 2006, 7, 318-325.	14.5	468
4	Legionella phagosomes intercept vesicular traffic from endoplasmic reticulum exit sites. Nature Cell Biology, 2002, 4, 945-954.	10.3	420
5	Modulation of Host Cell Function by <i>Legionella pneumophila</i> Type IV Effectors. Annual Review of Cell and Developmental Biology, 2010, 26, 261-283.	9.4	414
6	The <i>Legionella</i> Effector RavZ Inhibits Host Autophagy Through Irreversible Atg8 Deconjugation. Science, 2012, 338, 1072-1076.	12.6	401
7	Ankyrin Repeat Proteins Comprise a Diverse Family of Bacterial Type IV Effectors. Science, 2008, 320, 1651-1654.	12.6	367
8	Legionella pneumophilaDotA protein is required for early phagosome trafficking decisions that occur within minutes of bacterial uptake. Molecular Microbiology, 1998, 28, 663-674.	2.5	351
9	The Legionella pneumophila effector protein DrrA is a Rab1 guanine nucleotide-exchange factor. Nature Cell Biology, 2006, 8, 971-977.	10.3	328
10	Legionella pneumophila proteins that regulate Rab1 membrane cycling. Nature, 2007, 450, 365-369.	27.8	324
11	How the parasitic bacterium <i>Legionella pneumophila</i> modifies its phagosome and transforms it into rough ER: implications for conversion of plasma membrane to the ER membrane. Journal of Cell Science, 2001, 114, 4637-4650.	2.0	301
12	Modulation of Rab GTPase function by a protein phosphocholine transferase. Nature, 2011, 477, 103-106.	27.8	292
13	Legionella Subvert the Functions of Rab1 and Sec22b to Create a Replicative Organelle. Journal of Experimental Medicine, 2004, 199, 1201-1211.	8.5	287
14	A C-terminal translocation signal required for Dot/Icm-dependent delivery of the Legionella RalF protein to host cells. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 826-831.	7.1	262
15	Modulation of phagosome biogenesis by Legionella pneumophila creates an organelle permissive for intracellular growth. Nature Cell Biology, 1999, 1, 451-453.	10.3	249
16	Caspase-11 stimulates rapid flagellin-independent pyroptosis in response to <i>Legionella pneumophila</i> . Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 1851-1856.	7.1	242
17	The Coxiella burnetii Dot/Icm System Delivers a Unique Repertoire of Type IV Effectors into Host Cells and Is Required for Intracellular Replication. PLoS Pathogens, 2011, 7, e1002056.	4.7	206
18	Effector proteins translocated by Legionella pneumophila: strength in numbers. Trends in Microbiology, 2007, 15, 372-380.	7.7	175

#	Article	IF	CITATIONS
19	Asc and Ipaf Inflammasomes Direct Distinct Pathways for Caspase-1 Activation in Response to <i>Legionella pneumophila</i> . Infection and Immunity, 2009, 77, 1981-1991.	2.2	168
20	Identification of Icm protein complexes that play distinct roles in the biogenesis of an organelle permissive for Legionella pneumophila intracellular growth. Molecular Microbiology, 2000, 38, 719-736.	2.5	166
21	Pathogen subversion of cell-intrinsic innate immunity. Nature Immunology, 2007, 8, 1179-1187.	14.5	160
22	Host cell processes that influence the intracellular survival of Legionella pneumophila. Cellular Microbiology, 2008, 10, 1209-1220.	2.1	149
23	Inhibition of pathogen-induced apoptosis by a <i>Coxiella burnetii</i> type IV effector protein. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 18997-19001.	7.1	149
24	Coxiella burnetii express type IV secretion system proteins that function similarly to components of the Legionella pneumophila Dot/Icm system. Molecular Microbiology, 2003, 49, 965-976.	2.5	146
25	Attachment and fusion of endoplasmic reticulum with vacuoles containing Legionella pneumophila. Cellular Microbiology, 2006, 8, 793-805.	2.1	141
26	A Screen of Coxiella burnetii Mutants Reveals Important Roles for Dot/Icm Effectors and Host Autophagy in Vacuole Biogenesis. PLoS Pathogens, 2014, 10, e1004286.	4.7	141
27	The road less traveled. Journal of Cell Biology, 2002, 158, 415-419.	5.2	140
28	The Legionella IcmS-IcmW protein complex is important for Dot/Icm-mediated protein translocation. Molecular Microbiology, 2004, 55, 912-926.	2.5	130
29	A yeast genetic system for the identification and characterization of substrate proteins transferred into host cells by the Legionella pneumophila Dot/Icm system. Molecular Microbiology, 2005, 56, 918-933.	2.5	125
30	Pore-forming activity is not sufficient for Legionella pneumophila phagosome trafficking and intracellular growth. Molecular Microbiology, 1999, 32, 990-1001.	2.5	123
31	MyD88-Dependent Responses Involving Toll-Like Receptor 2 Are Important for Protection and Clearance of Legionella pneumophila in a Mouse Model of Legionnaires' Disease. Infection and Immunity, 2006, 74, 3325-3333.	2.2	123
32	Type IV Secretion-Dependent Activation of Host MAP Kinases Induces an Increased Proinflammatory Cytokine Response to Legionella pneumophila. PLoS Pathogens, 2008, 4, e1000220.	4.7	114
33	Effector Protein Translocation by the Coxiella burnetii Dot/Icm Type IV Secretion System Requires Endocytic Maturation of the Pathogen-Occupied Vacuole. PLoS ONE, 2013, 8, e54566.	2.5	111
34	Microtubule motors control membrane dynamics of Salmonella-containing vacuoles. Journal of Cell Science, 2004, 117, 1033-1045.	2.0	110
35	Show me the substrates: modulation of host cell function by type IV secretion systems. Cellular Microbiology, 2003, 5, 373-383.	2.1	103
36	<i>Coxiella burnetii</i> Inhibits Activation of Host Cell Apoptosis through a Mechanism That Involves Preventing Cytochrome <i>c</i> Release from Mitochondria. Infection and Immunity, 2007, 75, 5282-5289.	2.2	103

#	Article	IF	CITATIONS
37	Host Pathways Important for Coxiella burnetii Infection Revealed by Genome-Wide RNA Interference Screening. MBio, 2013, 4, e00606-12.	4.1	103
38	Lipidation by the Host Prenyltransferase Machinery Facilitates Membrane Localization of Legionella pneumophila Effector Proteins. Journal of Biological Chemistry, 2010, 285, 34686-34698.	3.4	100
39	The DotA protein from Legionella pneumophila is secreted by a novel process that requires the Dot/Icm transporter. EMBO Journal, 2001, 20, 5962-5970.	7.8	95
40	The Legionella pneumophila IcmSW Complex Interacts with Multiple Dot/Icm Effectors to Facilitate Type IV Translocation. PLoS Pathogens, 2007, 3, e188.	4.7	93
41	The Structure of RalF, an ADP-ribosylation Factor Guanine Nucleotide Exchange Factor from Legionella pneumophila, Reveals the Presence of a Cap over the Active Site. Journal of Biological Chemistry, 2005, 280, 1392-1400.	3.4	92
42	Pathogen signatures activate a ubiquitination pathway that modulates the function of the metabolic checkpoint kinase mTOR. Nature Immunology, 2013, 14, 1219-1228.	14.5	92
43	A Rab-Centric Perspective of Bacterial Pathogen-Occupied Vacuoles. Cell Host and Microbe, 2013, 14, 256-268.	11.0	92
44	Identification and Subcellular Localization of the Legionella pneumophila IcmX Protein: a Factor Essential for Establishment of a Replicative Organelle in Eukaryotic Host Cells. Infection and Immunity, 2000, 68, 3971-3982.	2.2	90
45	Rapid Pathogen-Induced Apoptosis: A Mechanism Used by Dendritic Cells to Limit Intracellular Replication of Legionella pneumophila. PLoS Pathogens, 2009, 5, e1000478.	4.7	90
46	Legionella pneumophila Promotes Functional Interactions between Plasma Membrane Syntaxins and Sec22b. Traffic, 2010, 11, 587-600.	2.7	87
47	Pathogen–endoplasmic-reticulum interactions: in through the out door. Nature Reviews Immunology, 2006, 6, 136-147.	22.7	85
48	The Legionella pneumophila Effector DrrA Is Sufficient to Stimulate SNARE-Dependent Membrane Fusion. Cell Host and Microbe, 2012, 11, 46-57.	11.0	85
49	Stimulation of Toll-like Receptor 2 by Coxiella burnetii Is Required for Macrophage Production of Pro-inflammatory Cytokines and Resistance to Infection. Journal of Biological Chemistry, 2004, 279, 54405-54415.	3.4	84
50	Subversion of membrane transport pathways by vacuolar pathogens. Journal of Cell Biology, 2011, 195, 943-952.	5.2	84
51	Inhibition of inflammasome activation by Coxiella burnetii type IV secretion system effector IcaA. Nature Communications, 2015, 6, 10205.	12.8	82
52	Multiple <i>Legionella pneumophila</i> effector virulence phenotypes revealed through high-throughput analysis of targeted mutant libraries. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E10446-E10454.	7.1	81
53	The Legionella Anti-autophagy Effector RavZ Targets the Autophagosome via PI3P- and Curvature-Sensing Motifs. Developmental Cell, 2015, 34, 569-576.	7.0	80
54	A unique cytoplasmic ATPase complex defines the Legionella pneumophila type IV secretion channel. Nature Microbiology, 2018, 3, 678-686.	13.3	80

#	Article	IF	CITATIONS
55	Manipulation of host membrane machinery by bacterial pathogens. Current Opinion in Cell Biology, 2010, 22, 547-554.	5.4	75
56	Dissection of a type I interferon pathway in controlling bacterial intracellular infection in mice. Cellular Microbiology, 2011, 13, 1668-1682.	2.1	75
57	The Anaplasma phagocytophilum-occupied vacuole selectively recruits Rab-GTPases that are predominantly associated with recycling endosomes. Cellular Microbiology, 2010, 12, 1292-1307.	2.1	74
58	Autophagy Evasion and Endoplasmic Reticulum Subversion: The Yin and Yang of <i>Legionella</i> Intracellular Infection. Annual Review of Microbiology, 2016, 70, 413-433.	7.3	74
59	Asc Modulates the Function of NLRC4 in Response to Infection of Macrophages by Legionella pneumophila. MBio, $2011, 2, \ldots$	4.1	71
60	Structure of the Legionella effector AnkX reveals the mechanism of phosphocholine transfer by the FIC domain. EMBO Journal, 2013, 32, 1469-1477.	7.8	68
61	Modulation of ubiquitin dynamics and suppression of DALIS formation by the <i>Legionella pneumophila </i> Ji>Dot/Icm system. Cellular Microbiology, 2009, 11, 261-278.	2.1	67
62	Multiple MyD88-dependent responses contribute to pulmonary clearance ofLegionella pneumophila. Cellular Microbiology, 2009, 11, 21-36.	2.1	66
63	Use of Salt to Isolate Legionella pneumophila Mutants Unable to Replicate in Macrophages. Annals of the New York Academy of Sciences, 1996, 797, 271-272.	3.8	64
64	Recognition and Delivery of Effector Proteins into Eukaryotic Cells by Bacterial Secretion Systems. Traffic, 2006, 7, 929-939.	2.7	64
65	NALP3: a key player in caspase-1 activation. Journal of Endotoxin Research, 2006, 12, 251-256.	2.5	64
66	The Machinery at Endoplasmic Reticulum-Plasma Membrane Contact Sites Contributes to Spatial Regulation of Multiple Legionella Effector Proteins. PLoS Pathogens, 2014, 10, e1004222.	4.7	63
67	Legionella Reveal Dendritic Cell Functions that Facilitate Selection of Antigens for MHC Class II Presentation. Immunity, 2003, 18, 813-823.	14.3	62
68	Alveolar Macrophages and Neutrophils Are the Primary Reservoirs for Legionella pneumophila and Mediate Cytosolic Surveillance of Type IV Secretion. Infection and Immunity, 2014, 82, 4325-4336.	2.2	60
69	A Legionella pneumophila Effector Protein Encoded in a Region of Genomic Plasticity Binds to Dot/Icm-Modified Vacuoles. PLoS Pathogens, 2009, 5, e1000278.	4.7	59
70	NALP3: a key player in caspase-1 activation. Journal of Endotoxin Research, 2006, 12, 251-256.	2.5	58
71	Bacterial type IV secretion systems in human disease. Molecular Microbiology, 2009, 73, 141-151.	2.5	58
72	<i>Legionella pneumophila</i> Subversion of Host Vesicular Transport by <scp>SidC</scp> Effector Proteins. Traffic, 2014, 15, 488-499.	2.7	56

#	Article	IF	CITATIONS
73	Cellular hijacking: a common strategy for microbial infection. Trends in Biochemical Sciences, 2002, 27, 308-314.	7.5	53
74	Bacterial FIC Proteins AMP Up Infection. Science Signaling, 2009, 2, pe14.	3.6	53
75	Cooperation between Multiple Microbial Pattern Recognition Systems Is Important for Host Protection against the Intracellular Pathogen <i>Legionella pneumophila</i> . Infection and Immunity, 2010, 78, 2477-2487.	2.2	53
76	Toxicity and SidJ-Mediated Suppression of Toxicity Require Distinct Regions in the SidE Family of Legionella pneumophila Effectors. Infection and Immunity, 2015, 83, 3506-3514.	2.2	52
77	Exploitation of the endoplasmic reticulum by bacterial pathogens. Trends in Microbiology, 2002, 10, 418-424.	7.7	51
78	AMPylation Is Critical for Rab1 Localization to Vacuoles Containing Legionella pneumophila. MBio, 2014, 5, e01035-13.	4.1	51
79	Autophagy and bacterial infection: an evolving arms race. Trends in Microbiology, 2013, 21, 451-456.	7.7	48
80	Structural Basis for PI(4)P-Specific Membrane Recruitment of the Legionella pneumophila Effector DrrA/SidM. Structure, 2014, 22, 397-408.	3.3	48
81	Biogenesis of the lysosome-derived vacuole containing Coxiella burnetii. Microbes and Infection, 2015, 17, 766-771.	1.9	46
82	Manipulation of Host Cell Organelles by Intracellular Pathogens. Microbiology Spectrum, 2019, 7, .	3.0	45
83	Effector Protein Cig2 Decreases Host Tolerance of Infection by Directing Constitutive Fusion of Autophagosomes with the $\langle i \rangle$ Coxiella $\langle i \rangle$ -Containing Vacuole. MBio, 2016, 7, .	4.1	43
84	Lysosomal degradation products induce <i>Coxiella burnetii</i> virulence. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 6801-6810.	7.1	40
85	Inflammasome activation restricts <i>Legionella pneumophila</i> replication in primary microglial cells through flagellin detection. Glia, 2013, 61, 539-549.	4.9	39
86	Structure and function of Fic proteins. Nature Reviews Microbiology, 2015, 13, 631-640.	28.6	39
87	Mechanism of effector capture and delivery by the type IV secretion system from Legionella pneumophila. Nature Communications, 2020, 11, 2864.	12.8	37
88	Analysis of Dot/Icm Type IVB Secretion System Subassemblies by Cryoelectron Tomography Reveals Conformational Changes Induced by DotB Binding. MBio, 2020, 11, .	4.1	36
89	The Capping Domain in RalF Regulates Effector Functions. PLoS Pathogens, 2012, 8, e1003012.	4.7	35
90	Legionella DotM structure reveals a role in effector recruiting to the Type 4B secretion system. Nature Communications, 2018, 9, 507.	12.8	35

#	Article	IF	Citations
91	A Novel Membrane Sensor Controls the Localization and ArfGEF Activity of Bacterial RalF. PLoS Pathogens, 2013, 9, e1003747.	4.7	33
92	Dot/Icm-Translocated Proteins Important for Biogenesis of the Coxiella burnetii-Containing Vacuole Identified by Screening of an Effector Mutant Sublibrary. Infection and Immunity, 2018, 86, .	2.2	33
93	Immunity to vacuolar pathogens: What can we learn from Legionella?. Cellular Microbiology, 2004, 6, 1011-1018.	2.1	32
94	The Legionella pneumophila GTPase Activating Protein LepB Accelerates Rab1 Deactivation by a Non-canonical Hydrolytic Mechanism. Journal of Biological Chemistry, 2013, 288, 24000-24011.	3.4	30
95	The Coxiella burnetii Dot/Icm System Creates a Comfortable Home through Lysosomal Renovation. MBio, 2011, 2, .	4.1	28
96	NDP52: the missing link between ubiquitinated bacteria and autophagy. Nature Immunology, 2009, 10, 1137-1139.	14.5	27
97	Chitinase 3-Like 1 (Chil1) Regulates Survival and Macrophage-Mediated Interleukin- $\hat{1}^2$ and Tumor Necrosis Factor Alpha during Pseudomonas aeruginosa Pneumonia. Infection and Immunity, 2016, 84, 2094-2104.	2.2	26
98	Primary Role for Toll-Like Receptor-Driven Tumor Necrosis Factor Rather than Cytosolic Immune Detection in Restricting Coxiella burnetii Phase II Replication within Mouse Macrophages. Infection and Immunity, 2016, 84, 998-1015.	2.2	25
99	Activated Macrophages Infected withLegionellaInhibit T Cells by Means of MyD88-Dependent Production of Prostaglandins. Journal of Immunology, 2005, 175, 8181-8190.	0.8	24
100	DNA Delivery and Genomic Integration into Mammalian Target Cells through Type IV A and B Secretion Systems of Human Pathogens. Frontiers in Microbiology, 2017, 8, 1503.	3.5	23
101	Screening <i>Legionella </i> effectors for antiviral effects reveals Rab1 GTPase as a proviral factor coopted for tombusvirus replication. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 21739-21747.	7.1	23
102	The role of Rab GTPases in the transport of vacuoles containing <i>Legionella pneumophila </i> and <i>Coxiella burnetii </i> Biochemical Society Transactions, 2012, 40, 1353-1359.	3.4	22
103	Autophagic targeting and avoidance in intracellular bacterial infections. Current Opinion in Microbiology, 2017, 35, 36-41.	5.1	22
104	Legionella pneumophila Excludes Autophagy Adaptors from the Ubiquitin-Labeled Vacuole in Which It Resides. Infection and Immunity, 2020, 88, .	2.2	22
105	A Farnesylated Coxiella burnetii Effector Forms a Multimeric Complex at the Mitochondrial Outer Membrane during Infection. Infection and Immunity, 2017, 85, .	2.2	20
106	Recognition of Intracellular Bacteria by Inflammasomes. , 0, , 287-297.		20
107	Host cell depletion of tryptophan by IFN \hat{I}^3 -induced Indoleamine 2,3-dioxygenase 1 (IDO1) inhibits lysosomal replication of Coxiella burnetii. PLoS Pathogens, 2019, 15, e1007955.	4.7	19
108	The Dot/Icm transporter of Legionella pneumophila: A bacterial conductor of vesicle trafficking that orchestrates the establishment of a replicative organelle in eukaryotic hosts. International Journal of Medical Microbiology, 2001, 291, 463-467.	3.6	18

#	Article	IF	Citations
109	Cytosolic detection of flagellin: a deadly twist. Nature Immunology, 2006, 7, 549-551.	14.5	18
110	Host Lipidation: A Mechanism for Spatial Regulation of Legionella Effectors. Current Topics in Microbiology and Immunology, 2013, 376, 135-154.	1.1	18
111	MTOR-Driven Metabolic Reprogramming Regulates Legionella pneumophila Intracellular Niche Homeostasis. PLoS Pathogens, 2016, 12, e1006088.	4.7	18
112	<i>Legionella</i> remodels the plasma membrane–derived vacuole by utilizing exocyst components as tethers. Journal of Cell Biology, 2018, 217, 3863-3872.	5.2	18
113	Professional secrets. Nature, 2003, 425, 351-352.	27.8	17
114	Structure and Function of Interacting lcmR-lcmQ Domains from a Type IVb Secretion System in Legionella pneumophila. Structure, 2009, 17, 590-601.	3.3	16
115	Processing and Major Histocompatibility Complex Class II Presentation of Legionella pneumophila Antigens by Infected Macrophages. Infection and Immunity, 2005, 73, 2336-2343.	2.2	15
116	Analyzing Caspase-1 Activation During Legionella pneumophila Infection in Macrophages. Methods in Molecular Biology, 2013, 954, 479-491.	0.9	14
117	Analysis of Rab1 Recruitment to Vacuoles Containing Legionella pneumophila. Methods in Enzymology, 2005, 403, 71-81.	1.0	13
118	Subversion of Host Membrane Dynamics by the Legionella Dot/Icm Type IV Secretion System. Current Topics in Microbiology and Immunology, 2017, 413, 221-242.	1.1	13
119	Acyl Histidines: New Nâ€Acyl Amides from <i>Legionella pneumophila</i> . ChemBioChem, 2017, 18, 638-646.	2.6	12
120	Biogenesis of the Spacious $\langle i \rangle$ Coxiella $\langle i \rangle$ -Containing Vacuole Depends on Host Transcription Factors TFEB and TFE3. Infection and Immunity, 2020, 88, .	2.2	12
121	Coxiella burnetii Secretion Systems. Advances in Experimental Medicine and Biology, 2012, 984, 171-197.	1.6	11
122	Legionella pneumophila Type IV Effectors YlfA and YlfB Are SNARE-Like Proteins that Form Homo- and Heteromeric Complexes and Enhance the Efficiency of Vacuole Remodeling. PLoS ONE, 2016, 11, e0159698.	2.5	11
123	Legionnaires' Disease and Pontiac Fever. , 2015, , 2633-2644.e6.		10
124	Proteins DotY and DotZ modulate the dynamics and localization of the type IVB coupling complex of <i>Legionella pneumophila</i> . Molecular Microbiology, 2022, 117, 307-319.	2.5	8
125	On the use of Legionella/Rickettsia chimeras to investigate the structure and regulation of Rickettsia effector RalF. Journal of Structural Biology, 2015, 189, 98-104.	2.8	7
126	Infect and Inject., 2020, , 113-126.		7

#	Article	IF	Citations
127	The Wolbachia Endosymbionts. , 2020, , 139-153.		7
128	Bacterial subversion of the host secretory pathway. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 1271-1272.	7.1	6
129	Vacuolar pathogens value membrane integrity. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 3197-3198.	7.1	6
130	Reaching the End of the Line. , 2020, , 83-99.		6
131	<i>Coxiella burnetii</i> encodes an <scp>LvgA</scp> â€related protein important for intracellular replication. Cellular Microbiology, 2021, 23, e13331.	2.1	6
132	Mycobacterium tuberculosis., 2020, , 127-138.		5
133	Identification and functional characterization of K+transporters encoded byLegionella pneumophilaâ€kupgenes. Cellular Microbiology, 2013, 15, 2006-2019.	2.1	4
134	Interaction between Intracellular Bacterial Pathogens and Host Cell Mitochondria., 2020, , 1-13.		4
135	<i>Shigella</i> Pathogenesis., 0, , 15-39.		4
136	Analyzing Association of the Endoplasmic Reticulum with the Legionella pneumophila–Containing Vacuoles by Fluorescence Microscopy. Methods in Molecular Biology, 2008, 445, 379-387.	0.9	4
137	Applying Live Cell Imaging and Cryo-Electron Tomography to Resolve Spatiotemporal Features of the Legionella pneumophila Dot/Icm Secretion System. Journal of Visualized Experiments, 2020, , .	0.3	3
138	The Legionella pneumophila Effector RavY Contributes to a Replication-Permissive Vacuolar Environment during Infection. Infection and Immunity, 2021, 89, e0026121.	2.2	3
139	Trimming the fat: a Brucella abortus survival strategy. Nature Immunology, 2005, 6, 546-548.	14.5	2
140	Manipulation of Host Cell Organelles by Intracellular Pathogens. , 2020, , 179-196.		2
141	The Intracellular Life Cycle of <i>Brucella</i> spp , 0, , 101-111.		2
142	Exploitation of macrophages as a replication niche by Legionella pneumophila: Response. Trends in Microbiology, 2000, 8, 49-50.	7.7	1
143	The Interplay between Salmonella enterica Serovar Typhimurium and the Intestinal Mucosa during Oral Infection., 2020,, 41-57.		1
144	Peculiar ability of dendritic cells to process and present antigens from vacuolar pathogens: a lesson from <i>Legionella </i> . , 2007, , 141-158.		0

#	Article	IF	Citations
145	Utilization of Endoplasmic Reticulum Membranes to Establish a Vacuole that Supports Replication of Legionella pneumophila., 2006,, 199-210.		O
146	The Genus Legionella. , 2015, , 625-638.		0
147	Salmonella Single-Cell Metabolism and Stress Responses in Complex Host Tissues. , 2020, , 167-177.		O
148	Make It a Sweet Home. , 2020, , 155-165.		0
149	Cell Biology of Intracellular Adaptation of Mycobacterium lepraein the Peripheral Nervous System. , 2020, , 227-245.		O
150	Modulation of Host Cell Metabolism by <i>Chlamydia trachomatis</i> ., 0, , 267-276.		0
151	Modeling Infectious Diseases in Mice with a "Humanized―Immune System. , 2020, , 299-313.		O
152	Cellular Imaging of Intracellular Bacterial Pathogens. , 2020, , 325-335.		0
153	Host-Encoded Sensors of Bacteria. , 2020, , 277-286.		O
154	A Cinematic View of Tissue Microbiology in the Live Infected Host. , 2020, , 315-324.		0
155	The Many Faces of Bacterium-Endothelium Interactions during Systemic Infections. , 2020, , 69-81.		O
156	Cover Image: <i>Coxiella burnetii</i> encodes an LvgAâ€related protein important for intracellular replication (Cellular Microbiology 06/2021). Cellular Microbiology, 2021, 23, e13351.	2.1	0
157	Host SNAREs mediate fusion of vacuoles containing Legionella pneumophila with vesicles exiting the endoplasmic reticulum. FASEB Journal, 2009, 23, 867.4.	0.5	O
158	Genetics of Mouse Macrophage Resistance to <i>Legionella pneumophila</i> ., 0, , 301-306.		0