Christine Lyn Le Maitre

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9331037/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The effect of apigenin and chemotherapy combination treatments on apoptosis-related genes and proteins in acute leukaemia cell lines. Scientific Reports, 2022, 12, .	3.3	12
2	Multiscale Regulation of the Intervertebral Disc: Achievements in Experimental, In Silico, and Regenerative Research. International Journal of Molecular Sciences, 2021, 22, 703.	4.1	27
3	TonEBP regulates the hyperosmotic expression of aquaporin 1 and 5 in the intervertebral disc. Scientific Reports, 2021, 11, 3164.	3.3	7
4	The strain-generated electrical potential in cartilaginous tissues: a role for piezoelectricity. Biophysical Reviews, 2021, 13, 91-100.	3.2	13
5	Molecular Action of Polyphenols in Leukaemia and Their Therapeutic Potential. International Journal of Molecular Sciences, 2021, 22, 3085.	4.1	8
6	The antimicrobial activity and biocompatibility of a controlled gentamicin-releasing single-layer sol-gel coating on hydroxyapatite-coated titanium. Bone and Joint Journal, 2021, 103-B, 522-529.	4.4	31
7	A perspective on the <scp><i>ORS Spine Section</i></scp> initiative to develop a multiâ€species <scp><i>JOR Spine</i></scp> histopathology series. JOR Spine, 2021, 4, e1165.	3.2	2
8	Development of a standardized histopathology scoring system for human intervertebral disc degeneration: an Orthopaedic Research Society Spine Section Initiative. JOR Spine, 2021, 4, e1167.	3.2	25
9	One-pot precipitation polymerisation strategy for tuneable injectable Laponite®-pNIPAM hydrogels: Polymerisation, processability and beyond. Polymer, 2021, 233, 124201.	3.8	8
10	Cell sources proposed for nucleus pulposus regeneration. JOR Spine, 2021, 4, e1175.	3.2	34
11	Notochordal Cell-Based Treatment Strategies and Their Potential in Intervertebral Disc Regeneration. Frontiers in Cell and Developmental Biology, 2021, 9, 780749.	3.7	21
12	Degenerative physiochemical events in the pathological intervertebral disc. Histology and Histopathology, 2021, , 18395.	0.7	2
13	Lactate Efflux From Intervertebral Disc Cells Is Required for Maintenance of Spine Health. Journal of Bone and Mineral Research, 2020, 35, 550-570.	2.8	46
14	Mass spectrometry imaging of endogenous metabolites in response to doxorubicin in a novel 3D osteosarcoma cell culture model. Journal of Mass Spectrometry, 2020, 55, e4461.	1.6	22
15	Improving reproducibility in spine research. JOR Spine, 2020, 3, e1127.	3.2	1
16	Immunohistochemical analysis of protein expression in formalin fixed paraffin embedded human intervertebral disc tissues. JOR Spine, 2020, 3, e1098.	3.2	8
17	Characterization of biomaterials intended for use in the nucleus pulposus of degenerated intervertebral discs. Acta Biomaterialia, 2020, 114, 1-15.	8.3	35
18	Modelling the catabolic environment of the moderately degenerated disc with a caprine ex vivo loaded disc culture system. , 2020, 40, 21-37.		11

2

#	Article	IF	CITATIONS
19	The use of auxetic materials in tissue engineering. Biomaterials Science, 2020, 8, 2074-2083.	5.4	78
20	SAT-041 Testosterone Reduces Atherosclerosis and Plaque Specific Inflammatory Markers in the ApoE-/- Mouse Model. Journal of the Endocrine Society, 2020, 4, .	0.2	0
21	Use of <scp>l</scp> -pNIPAM hydrogel as a 3D-scaffold for intestinal crypts and stem cell tissue engineering. Biomaterials Science, 2019, 7, 4310-4324.	5.4	23
22	Mesenchymal stem cell therapies for intervertebral disc degeneration: Consideration of the degenerate niche. JOR Spine, 2019, 2, e1055.	3.2	24
23	Aquaporin expression in the human and canine intervertebral disc during maturation and degeneration. JOR Spine, 2019, 2, e1049.	3.2	15
24	Recapitulating Parkinson's disease pathology in a three-dimensional human neural cell culture model. DMM Disease Models and Mechanisms, 2019, 12, .	2.4	31
25	Long-term in vitro 3D hydrogel co-culture model of inflammatory bowel disease. Scientific Reports, 2019, 9, 1812.	3.3	37
26	Physical disruption of intervertebral disc promotes cell clustering and a degenerative phenotype. Cell Death Discovery, 2019, 5, 154.	4.7	13
27	Hedgehog proteins and parathyroid hormoneâ€related protein are involved in intervertebral disc maturation, degeneration, and calcification. JOR Spine, 2019, 2, e1071.	3.2	15
28	Interleukin 1 is a key driver of inflammatory bowel disease-demonstration in a murine IL-1Ra knockout model. Oncotarget, 2019, 10, 3559-3575.	1.8	28
29	Polyphenols enhance the activity of alkylating agents in leukaemia cell lines. Oncotarget, 2019, 10, 4570-4586.	1.8	14
30	Nerves and blood vessels in degenerated intervertebral discs are confined to physically disrupted tissue. Journal of Anatomy, 2018, 233, 86-97.	1.5	64
31	Tissue Engineering Laboratory Models of the Small Intestine. Tissue Engineering - Part B: Reviews, 2018, 24, 98-111.	4.8	29
32	Advancing cell therapies for intervertebral disc regeneration from the lab to the clinic: Recommendations of the ORS spine section. JOR Spine, 2018, 1, e1036.	3.2	74
33	<i>In vivo</i> safety and efficacy testing of a thermally triggered injectable hydrogel scaffold for bone regeneration and augmentation in a rat model. Oncotarget, 2018, 9, 18277-18295.	1.8	30
34	Leaping the hurdles in developing regenerative treatments for the intervertebral disc from preclinical to clinical. JOR Spine, 2018, 1, e1027.	3.2	40
35	Thermally triggered hydrogel injection into bovine intervertebral disc tissue explants induces differentiation of mesenchymal stem cells and restores mechanical function. Acta Biomaterialia, 2017, 54, 212-226.	8.3	50
36	Integrative epigenomics, transcriptomics and proteomics of patient chondrocytes reveal genes and pathways involved in osteoarthritis. Scientific Reports, 2017, 7, 8935.	3.3	90

#	Article	IF	CITATIONS
37	Use of hydrogel scaffolds to develop an in vitro 3D culture model of human intestinal epithelium. Acta Biomaterialia, 2017, 62, 128-143.	8.3	39
38	TNF-α promotes nuclear enrichment of the transcription factor TonEBP/NFAT5 to selectively control inflammatory but not osmoregulatory responses in nucleus pulposus cells. Journal of Biological Chemistry, 2017, 292, 17561-17575.	3.4	39
39	Inhibiting ILâ€1 signaling pathways to inhibit catabolic processes in disc degeneration. Journal of Orthopaedic Research, 2017, 35, 74-85.	2.3	34
40	Dietary polyphenols influence antimetabolite agents: methotrexate, 6-mercaptopurine and 5-fluorouracil in leukemia cell lines. Oncotarget, 2017, 8, 104877-104893.	1.8	10
41	Molecular mechanisms of biological aging in intervertebral discs. Journal of Orthopaedic Research, 2016, 34, 1289-1306.	2.3	270
42	Investigation of intervertebral disc degeneration using multivariate FTIR spectroscopic imaging. Faraday Discussions, 2016, 187, 393-414.	3.2	19
43	Thermally triggered injectable hydrogel, which induces mesenchymal stem cell differentiation to nucleus pulposus cells: Potential for regeneration of the intervertebral disc. Acta Biomaterialia, 2016, 36, 99-111.	8.3	58
44	Expression of Cannabinoid Receptors in Human Osteoarthritic Cartilage: Implications for Future Therapies. Cannabis and Cannabinoid Research, 2016, 1, 3-15.	2.9	41
45	Nucleus pulposus phenotypic markers to determine stem cell differentiation: fact or fiction?. Oncotarget, 2016, 7, 2189-2200.	1.8	51
46	Hydroxyapatite nanoparticle injectable hydrogel scaffold to support osteogenic differentiation of human mesenchymal stem cells. , 2016, 32, 1-23.		36
47	Aquaporin 1 and 5 expression decreases during human intervertebral disc degeneration: novel HIF-1-mediated regulation of aquaporins in NP cells. Oncotarget, 2015, 6, 11945-11958.	1.8	22
48	Glutathione is key to the synergistic enhancement of doxorubicin and etoposide by polyphenols in leukaemia cell lines. Cell Death and Disease, 2015, 6, e2028-e2028.	6.3	17
49	Nerves are more abundant than blood vessels in the degenerate human intervertebral disc. Arthritis Research and Therapy, 2015, 17, 370.	3.5	70
50	Potential roles of cytokines and chemokines in human intervertebral disc degeneration: interleukin-1 is a master regulator of catabolic processes. Osteoarthritis and Cartilage, 2015, 23, 1165-1177.	1.3	123
51	Class 3 semaphorins expression and association with innervation and angiogenesis within the degenerate human intervertebral disc. Oncotarget, 2015, 6, 18338-18354.	1.8	33
52	'Cell or Not to Cell' that is the Question: For Intervertebral Disc Regeneration?. HSOA Journal of Stem Cells Research, Development & Therapy, 2015, 2, 1-9.	0.2	4
53	Expression and regulation of neurotrophic and angiogenic factors during human intervertebral disc degeneration. Arthritis Research and Therapy, 2014, 16, 416.	3.5	118
54	Cannabinoid WIN-55,212-2 mesylate inhibits interleukin-1β induced matrix metalloproteinase and tissue inhibitor of matrix metalloproteinase expression in human chondrocytes. Osteoarthritis and Cartilage, 2014, 22, 133-144.	1.3	40

#	Article	IF	CITATIONS
55	The cytokine and chemokine expression profile of nucleus pulposus cells: implications for degeneration and regeneration of the intervertebral disc. Arthritis Research and Therapy, 2013, 15, R213.	3.5	86
56	Tumor necrosis factor α– and interleukinâ€1β–dependent induction of CCL3 expression by nucleus pulposus cells promotes macrophage migration through CCR1. Arthritis and Rheumatism, 2013, 65, 832-842.	6.7	144
57	Polyphenols are responsible for the proapoptotic properties of pomegranate juice on leukemia cell lines. Food Science and Nutrition, 2013, 1, 196-208.	3.4	30
58	Investigation of polarization-sensitive optical coherence tomography towards the study of microstructure of articular cartilage. Proceedings of SPIE, 2013, , .	0.8	0
59	Inflammatory Cytokines Induce NOTCH Signaling in Nucleus Pulposus Cells. Journal of Biological Chemistry, 2013, 288, 16761-16774.	3.4	93
60	Interleukin-1 receptor antagonist deficient mice provide insights into pathogenesis of human intervertebral disc degeneration. Annals of the Rheumatic Diseases, 2013, 72, 1860-1867.	0.9	101
61	Differential Effects of Polyphenols on Proliferation and Apoptosis in Human Myeloid and Lymphoid Leukemia Cell Lines. Anti-Cancer Agents in Medicinal Chemistry, 2013, 13, 1601-1613.	1.7	48
62	Effects of Bioactive Compounds from Carrots (Daucus carota L.), Polyacetylenes, Beta-Carotene and Lutein on Human Lymphoid Leukaemia Cells. Anti-Cancer Agents in Medicinal Chemistry, 2012, 12, 640-652.	1.7	72
63	Bioactive Actions of Pomegranate Fruit Extracts on Leukemia Cell Lines In Vitro Hold Promise for New Therapeutic Agents for Leukemia. Nutrition and Cancer, 2012, 64, 100-110.	2.0	36
64	Cannabinoids: novel therapies for arthritis?. Future Medicinal Chemistry, 2012, 4, 713-725.	2.3	15
65	Bioactive Chemicals from Carrot (<i>Daucus carota)</i> Juice Extracts for the Treatment of Leukemia. Journal of Medicinal Food, 2011, 14, 1303-1312.	1.5	36
66	Altered integrin mechanotransduction in human nucleus pulposus cells derived from degenerated discs. Arthritis and Rheumatism, 2009, 60, 460-469.	6.7	81
67	Modified expression of the ADAMTS enzymes and tissue inhibitor of metalloproteinases 3 during human intervertebral disc degeneration. Arthritis and Rheumatism, 2009, 60, 482-491.	6.7	232
68	Development of an <i>in vitro</i> model to test the efficacy of novel therapies for IVD degeneration. Journal of Tissue Engineering and Regenerative Medicine, 2009, 3, 461-469.	2.7	13
69	Expression of cartilage-derived morphogenetic protein in human intervertebral discs and its effect on matrix synthesis in degenerate human nucleus pulposus cells. Arthritis Research and Therapy, 2009, 11, R137.	3.5	58
70	An in vitro study investigating the survival and phenotype of mesenchymal stem cells following injection into nucleus pulposus tissue. Arthritis Research and Therapy, 2009, 11, R20.	3.5	87
71	Connective tissue growth factor expression in human intervertebral disc: implications for angiogenesis in intervertebral disc degeneration. Biotechnic and Histochemistry, 2008, 83, 239-245.	1.3	43
72	Caveolin-1 expression and stress-induced premature senescence in human intervertebral disc degeneration. Arthritis Research and Therapy, 2008, 10, R87.	3.5	55

#	Article	IF	CITATIONS
73	Investigation of the role of IL-1 and TNF in matrix degradation in the intervertebral disc. Rheumatology, 2008, 47, 809-814.	1.9	222
74	Human cells derived from degenerate intervertebral discs respond differently to those derived from non-degenerate intervertebral discs following application of dynamic hydrostatic pressure. Biorheology, 2008, 45, 563-575.	0.4	57
75	Human cells derived from degenerate intervertebral discs respond differently to those derived from non-degenerate intervertebral discs following application of dynamic hydrostatic pressure. Biorheology, 2008, 45, 563-75.	0.4	29
76	Matrix synthesis and degradation in human intervertebral disc degeneration. Biochemical Society Transactions, 2007, 35, 652-655.	3.4	424
77	Interleukin-1 receptor antagonist delivered directly and by gene therapy inhibits matrix degradation in the intact degenerate human intervertebral disc: an in situ zymographic and gene therapy study. Arthritis Research and Therapy, 2007, 9, R83.	3.5	140
78	Catabolic cytokine expression in degenerate and herniated human intervertebral discs: IL-1β and TNFα expression profile. Arthritis Research and Therapy, 2007, 9, R77.	3.5	502
79	Accelerated cellular senescence in degenerate intervertebral discs: a possible role in the pathogenesis of intervertebral disc degeneration. Arthritis Research and Therapy, 2007, 9, R45.	3.5	365
80	A study of pH-responsive microgel dispersions: from fluid-to-gel transitions to mechanical property restoration for load-bearing tissue. Soft Matter, 2007, 3, 486.	2.7	46
81	A preliminary in vitro study into the use of IL-1Ra gene therapy for the inhibition of intervertebral disc degeneration. International Journal of Experimental Pathology, 2006, 87, 17-28.	1.3	93
82	Expression of receptors for putative anabolic growth factors in human intervertebral disc: implications for repair and regeneration of the disc. Journal of Pathology, 2005, 207, 445-452.	4.5	72
83	The role of interleukin-1 in the pathogenesis of human intervertebral disc degeneration. Arthritis Research, 2005, 7, R732.	2.0	695
84	Localization of degradative enzymes and their inhibitors in the degenerate human intervertebral disc. Journal of Pathology, 2004, 204, 47-54.	4.5	395
85	Studies of Human Intervertebral Disc Cell Function in a Constrained In Vitro Tissue Culture System. Spine, 2004, 29, 1187-1195.	2.0	34
86	Lâ€type <scp>Voltageâ€Gated</scp> calcium channels partly mediate Mechanotransduction in the intervertebral disc. JOR Spine, 0, , .	3.2	1
87	Immuno-Modulatory Effects of Intervertebral Disc Cells. Frontiers in Cell and Developmental Biology, 0, 10, .	3.7	20