
Sander Kersten

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9330591/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Triglyceride breakdown from lipid droplets regulates the inflammatory response in macrophages. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2114739119.	3.3	44
2	Angiopoietin-like 4 governs diurnal lipoprotein lipase activity in brown adipose tissue. Molecular Metabolism, 2022, 60, 101497.	3.0	8
3	ANGPTL4 silencing via antisense oligonucleotides reduces plasma triglycerides and glucose in mice without causing lymphadenopathy. Journal of Lipid Research, 2022, 63, 100237.	2.0	11
4	Lipoprotein Lipase and Its Regulators: An Unfolding Story. Trends in Endocrinology and Metabolism, 2021, 32, 48-61.	3.1	86
5	Long-lost friend is back in the game. Journal of Lipid Research, 2021, 62, 100072.	2.0	4
6	Metabolic responses to mild cold acclimation in type 2 diabetes patients. Nature Communications, 2021, 12, 1516.	5.8	13
7	Systemic PFOS and PFOA exposure and disturbed lipid homeostasis in humans: what do we know and what not?. Critical Reviews in Toxicology, 2021, 51, 141-164.	1.9	78
8	Hypoxia-inducible lipid droplet-associated induces DGAT1 and promotes lipid storage in hepatocytes. Molecular Metabolism, 2021, 47, 101168.	3.0	30
9	Inducible hepatic expression of CREBH mitigates diet-induced obesity, insulin resistance, and hepatic steatosis in mice. Journal of Biological Chemistry, 2021, 297, 100815.	1.6	6
10	RNA sequencing reveals niche gene expression effects of beta-hydroxybutyrate in primary myotubes. Life Science Alliance, 2021, 4, e202101037.	1.3	4
11	Triglyceride-rich lipoproteins and their remnants: metabolic insights, role in atherosclerotic cardiovascular disease, and emerging therapeutic strategies—a consensus statement from the European Atherosclerosis Society. European Heart Journal, 2021, 42, 4791-4806.	1.0	303
12	ANGPTL3 as therapeutic target. Current Opinion in Lipidology, 2021, 32, 335-341.	1.2	34
13	Hepatic ADTRP overexpression does not influence lipid and glucose metabolism. American Journal of Physiology - Cell Physiology, 2021, 321, C585-C595.	2.1	4
14	Mild intermittent hypoxia exposure induces metabolic and molecular adaptations in men with obesity. Molecular Metabolism, 2021, 53, 101287.	3.0	8
15	Role and mechanism of the action of angiopoietin-like protein ANGPTL4 in plasma lipid metabolism. Journal of Lipid Research, 2021, 62, 100150.	2.0	60
16	Mechanisms of Action of trans Fatty Acids. Advances in Nutrition, 2020, 11, 697-708.	2.9	136
17	Probing metabolic memory in the hepatic response to fasting. Physiological Genomics, 2020, 52, 602-617.	1.0	10
18	Transcriptomic signature of fasting in human adipose tissue. Physiological Genomics, 2020, 52, 451-467.	1.0	14

#	Article	IF	CITATIONS
19	Comparative transcriptome analysis of human skeletal muscle in response to cold acclimation and exercise training in human volunteers. BMC Medical Genomics, 2020, 13, 124.	0.7	6
20	Bypassing the LDL Receptor in Familial Hypercholesterolemia. New England Journal of Medicine, 2020, 383, 775-776.	13.9	7
21	MicroRNAâ€204â€5p modulates mitochondrial biogenesis in C2C12 myotubes and associates with oxidative capacity in humans. Journal of Cellular Physiology, 2020, 235, 9851-9863.	2.0	18
22	Regulation of lipid droplet homeostasis by hypoxia inducible lipid droplet associated HILPDA. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2020, 1865, 158738.	1.2	23
23	Fasting induces ANGPTL4 and reduces LPL activity in human adipose tissue. Molecular Metabolism, 2020, 40, 101033.	3.0	38
24	A lipase fusion feasts on fat. Journal of Biological Chemistry, 2020, 295, 2913-2914.	1.6	4
25	Endoplasmic reticulum–associated degradation regulates mitochondrial dynamics in brown adipocytes. Science, 2020, 368, 54-60.	6.0	107
26	Perfluorooctanoic acid (PFOA), perfluorooctane sulfonic acid (PFOS), and perfluorononanoic acid (PFNA) increase triglyceride levels and decrease cholesterogenic gene expression in human HepaRG liver cells. Archives of Toxicology, 2020, 94, 3137-3155.	1.9	55
27	HILPDA Uncouples Lipid Droplet Accumulation in Adipose Tissue Macrophages from Inflammation and Metabolic Dysregulation. Cell Reports, 2020, 30, 1811-1822.e6.	2.9	34
28	Sel1L-Hrd1 ER-associated degradation maintains β cell identity via TGF-β signaling. Journal of Clinical Investigation, 2020, 130, 3499-3510.	3.9	52
29	A single day of high-fat diet feeding induces lipid accumulation and insulin resistance in brown adipose tissue in mice. American Journal of Physiology - Endocrinology and Metabolism, 2019, 317, E820-E830.	1.8	40
30	Characterization of ANGPTL4 function in macrophages and adipocytes using Angptl4-knockout and Angptl4-hypomorphic mice. Journal of Lipid Research, 2019, 60, 1741-1754.	2.0	36
31	Industrial Trans Fatty Acids Stimulate SREBP2â€Mediated Cholesterogenesis and Promote Nonâ€Alcoholic Fatty Liver Disease. Molecular Nutrition and Food Research, 2019, 63, e1900385.	1.5	32
32	No effect of 25-hydroxyvitamin D supplementation on the skeletal muscle transcriptome in vitamin D deficient frail older adults. BMC Geriatrics, 2019, 19, 151.	1.1	12
33	Toll-like receptors TLR2 and TLR4 block the replication of pancreatic β cells in diet-induced obesity. Nature Immunology, 2019, 20, 677-686.	7.0	48
34	Transcriptional profiling of PPARαâ^'/â^' and CREB3L3â^'/â^' livers reveals disparate regulation of hepatoproliferative and metabolic functions of PPARα. BMC Genomics, 2019, 20, 199.	1.2	14
35	Lipoprotein lipase in mouse kidney: effects of nutritional status and high-fat diet. American Journal of Physiology - Renal Physiology, 2019, 316, F558-F571.	1.3	5
36	New insights into angiopoietin-like proteins in lipid metabolism and cardiovascular disease risk. Current Opinion in Lipidology, 2019, 30, 205-211.	1.2	64

#	Article	IF	CITATIONS
37	MicroRNAâ€382 silencing induces a mitonuclear protein imbalance and activates the mitochondrial unfolded protein response in muscle cells. Journal of Cellular Physiology, 2019, 234, 6601-6610.	2.0	19
38	The Peroxisome Proliferator-Activated Receptor Î \pm is dispensable for cold-induced adipose tissue browning in mice. Molecular Metabolism, 2018, 10, 39-54.	3.0	32
39	Loss of angiopoietin-like 4 (ANGPTL4) in mice with diet-induced obesity uncouples visceral obesity from glucose intolerance partly via the gut microbiota. Diabetologia, 2018, 61, 1447-1458.	2.9	70
40	Regulation of angiopoietin-like 4 and lipoprotein lipase in human adipose tissue. Journal of Clinical Lipidology, 2018, 12, 773-783.	0.6	23
41	Hypoxia-inducible lipid droplet-associated protein inhibits adipose triglyceride lipase. Journal of Lipid Research, 2018, 59, 531-541.	2.0	60
42	Plasma angiopoietin-like 4 is related to phospholipid transfer protein activity in diabetic and non-diabetic subjects: role of enhanced low grade inflammation. Lipids in Health and Disease, 2018, 17, 60.	1.2	7
43	Weight loss moderately affects the mixed meal challenge response of the plasma metabolome and transcriptome of peripheral blood mononuclear cells in abdominally obese subjects. Metabolomics, 2018, 14, 46.	1.4	18
44	A Diurnal Rhythm in Brown Adipose Tissue Causes Rapid Clearance and Combustion of Plasma Lipids at Wakening. Cell Reports, 2018, 22, 3521-3533.	2.9	68
45	Short-term cooling increases serum angiopoietin-like 4 levels in healthy lean men. Journal of Clinical Lipidology, 2018, 12, 56-61.	0.6	8
46	Hepatic Sel1Lâ€Hrd1 ERâ€associated degradation (ERAD) manages FGF21 levels and systemic metabolism via CREBH. EMBO Journal, 2018, 37, .	3.5	55
47	Global testing of shifts in metabolic phenotype. Metabolomics, 2018, 14, 139.	1.4	4
48	Integrative analysis of gut microbiota composition, host colonic gene expression and intraluminal metabolites in aging C57BL/6J mice. Aging, 2018, 10, 930-950.	1.4	46
49	Circadian misalignment induces fatty acid metabolism gene profiles and compromises insulin sensitivity in human skeletal muscle. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 7789-7794.	3.3	138
50	Angiopoietin-like 4 promotes the intracellular cleavage of lipoprotein lipase by PCSK3/furin in adipocytes. Journal of Biological Chemistry, 2018, 293, 14134-14145.	1.6	53
51	Multiple effects of cold exposure on livers of male mice. Journal of Endocrinology, 2018, 238, 91-106.	1.2	18
52	The whole transcriptome effects of the PPARα agonist fenofibrate on livers of hepatocyte humanized mice. BMC Genomics, 2018, 19, 443.	1.2	31
53	The role and regulation of the peroxisome proliferator activated receptor alpha in human liver. Biochimie, 2017, 136, 75-84.	1.3	269
54	Hypoxia-Inducible Lipid Droplet–Associated Is Not a Direct Physiological Regulator of Lipolysis in Adipose Tissue. Endocrinology, 2017, 158, 1231-1251.	1.4	24

#	Article	IF	CITATIONS
55	Feeding Angptl4â^'/â^' mice trans fat promotes foam cell formation in mesenteric lymph nodes without leading to ascites. Journal of Lipid Research, 2017, 58, 1100-1113.	2.0	22
56	Triglyceride Metabolism under Attack. Cell Metabolism, 2017, 25, 1209-1210.	7.2	6
57	Modulation of the gut microbiota impacts nonalcoholic fatty liver disease: a potential role for bile acids. Journal of Lipid Research, 2017, 58, 1399-1416.	2.0	94
58	System-wide Benefits of Intermeal Fasting by Autophagy. Cell Metabolism, 2017, 26, 856-871.e5.	7.2	104
59	Angiopoietin-like 3 in lipoprotein metabolism. Nature Reviews Endocrinology, 2017, 13, 731-739.	4.3	135
60	ANGPTL4 promotes bile acid absorption during taurocholic acid supplementation via a mechanism dependent on the gut microbiota. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2017, 1862, 1056-1067.	1.2	19
61	Regulation of lipid droplet-associated proteins by peroxisome proliferator-activated receptors. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2017, 1862, 1212-1220.	1.2	83
62	Potential mediators linking gut bacteria to metabolic health: a critical view. Journal of Physiology, 2017, 595, 477-487.	1.3	60
63	Muscle-specific inflammation induced by MCP-1 overexpression does not affect whole-body insulin sensitivity in mice. Diabetologia, 2016, 59, 624-633.	2.9	29
64	The Genetics of Dyslipidemia — When Less Is More. New England Journal of Medicine, 2016, 374, 1192-1193.	13.9	4
65	Angiopoietin-like 4 promotes intracellular degradation of lipoprotein lipase in adipocytes. Journal of Lipid Research, 2016, 57, 1670-1683.	2.0	86
66	CREBH-FGF21 axis improves hepatic steatosis by suppressing adipose tissue lipolysis. Scientific Reports, 2016, 6, 27938.	1.6	51
67	Regulation of lipid metabolism by angiopoietin-like proteins. Current Opinion in Lipidology, 2016, 27, 249-256.	1.2	138
68	Angiopoietin-Like Protein 4 and Postprandial Skeletal Muscle Lipid Metabolism in Overweight and Obese Prediabetics. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 2332-2339.	1.8	13
69	Gene expression profiling in human precision cut liver slices in response to the FXR agonist obeticholic acid. Journal of Hepatology, 2016, 64, 1158-1166.	1.8	76
70	Electric Pulse Stimulation of Myotubes as an In Vitro Exercise Model: Cell-Mediated and Non-Cell-Mediated Effects. Scientific Reports, 2015, 5, 10944.	1.6	43
71	The impact of PPARα activation on whole genome gene expression in human precision cut liver slices. BMC Genomics, 2015, 16, 760.	1.2	68
72	Exercise training improves liver steatosis in mice. Nutrition and Metabolism, 2015, 12, 29.	1.3	29

#	Article	IF	CITATIONS
73	Effects of high-fat feeding on ectopic fat storage and postprandial lipid metabolism in mouse offspring. Obesity, 2015, 23, 2242-2250.	1.5	1
74	Perilipin 5 mediated lipid droplet remodelling revealed by coherent Raman imaging. Integrative Biology (United Kingdom), 2015, 7, 467-476.	0.6	27
75	Brown adipose tissue takes up plasma triglycerides mostly after lipolysis. Journal of Lipid Research, 2015, 56, 51-59.	2.0	147
76	Global profiling of the muscle metabolome: method optimization, validation and application to determine exercise-induced metabolic effects. Metabolomics, 2015, 11, 271-285.	1.4	16
77	The search for exercise factors in humans. FASEB Journal, 2015, 29, 1615-1628.	0.2	105
78	Hepatic genome-wide expression of lipid metabolism in diet-induced obesity rats treated with cocoa polyphenols. Journal of Functional Foods, 2015, 17, 969-978.	1.6	20
79	Short-term cold acclimation improves insulin sensitivity in patients with type 2 diabetes mellitus. Nature Medicine, 2015, 21, 863-865.	15.2	460
80	The role of the gut microbiota in metabolic health. FASEB Journal, 2015, 29, 3111-3123.	0.2	167
81	Deletion of the gene encoding G0/G1 switch protein 2 (G0s2) alleviates high-fat-diet-induced weight gain and insulin resistance, and promotes browning of white adipose tissue in mice. Diabetologia, 2015, 58, 149-157.	2.9	38
82	IRE1α is an endogenous substrate of endoplasmic-reticulum-associated degradation. Nature Cell Biology, 2015, 17, 1546-1555.	4.6	173
83	ANGPTL4 mediates shuttling of lipid fuel to brown adipose tissue during sustained cold exposure. ELife, 2015, 4, .	2.8	100
84	Fatty acid-inducible ANGPTL4 governs lipid metabolic response to exercise. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E1043-52.	3.3	113
85	Angiopoietin-like 4 Stimulates STAT3-mediated iNOS Expression and Enhances Angiogenesis to Accelerate Wound Healing in Diabetic Mice. Molecular Therapy, 2014, 22, 1593-1604.	3.7	89
86	PPARδactivation in human myotubes increases mitochondrial fatty acid oxidative capacity and reduces glucose utilization by a switch in substrate preference. Archives of Physiology and Biochemistry, 2014, 120, 12-21.	1.0	22
87	Inflammation increases plasma angiopoietin-like protein 4 in patients with the metabolic syndrome and type 2 diabetes. BMJ Open Diabetes Research and Care, 2014, 2, e000034.	1.2	52
88	Mannose-Binding Lectin Is Required for the Effective Clearance of Apoptotic Cells by Adipose Tissue Macrophages During Obesity. Diabetes, 2014, 63, 4143-4153.	0.3	27
89	Hypoxia-inducible Lipid Droplet-associated (HILPDA) Is a Novel Peroxisome Proliferator-activated Receptor (PPAR) Target Involved in Hepatic Triglyceride Secretion. Journal of Biological Chemistry, 2014, 289, 19279-19293.	1.6	61
90	Transcriptomic signatures of peroxisome proliferator-activated receptor α (PPARα) in different mouse liver models identify novel aspects of its biology. BMC Genomics, 2014, 15, 1106.	1.2	33

#	Article	IF	CITATIONS
91	Adipocyte Spliced Form of X-Box–Binding Protein 1 Promotes Adiponectin Multimerization and Systemic Glucose Homeostasis. Diabetes, 2014, 63, 867-879.	0.3	33
92	Bioactivity screening and mass spectrometric confirmation for the detection of PPARδagonists that increase type 1 muscle fibres. Analytical and Bioanalytical Chemistry, 2014, 406, 705-713.	1.9	4
93	Regulation of lipoprotein lipase by Angptl4. Trends in Endocrinology and Metabolism, 2014, 25, 146-155.	3.1	154
94	Physiological regulation of lipoprotein lipase. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2014, 1841, 919-933.	1.2	391
95	Circulating angiopoietin-like 4 links proteinuria with hypertriglyceridemia in nephrotic syndrome. Nature Medicine, 2014, 20, 37-46.	15.2	140
96	Sequestration of fatty acids in triglycerides prevents endoplasmic reticulum stress in an in vitro model of cardiomyocyte lipotoxicity. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2014, 1841, 1648-1655.	1.2	68
97	Sel1L is indispensable for mammalian endoplasmic reticulum-associated degradation, endoplasmic reticulum homeostasis, and survival. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E582-91.	3.3	148
98	IL-37 protects against obesity-induced inflammation and insulin resistance. Nature Communications, 2014, 5, 4711.	5.8	186
99	ANGPTL4 is produced by entero-endocrine cells in the human intestinal tract. Histochemistry and Cell Biology, 2014, 141, 383-391.	0.8	34
100	Molecular mechanisms underlying the potential antiobesityâ€related diseases effect of cocoa polyphenols. Molecular Nutrition and Food Research, 2014, 58, 33-48.	1.5	71
101	The ER-Associated Degradation Adaptor Protein Sel1L Regulates LPL Secretion and Lipid Metabolism. Cell Metabolism, 2014, 20, 458-470.	7.2	92
102	Angptl4 serves as an endogenous inhibitor of intestinal lipid digestion. Molecular Metabolism, 2014, 3, 135-144.	3.0	66
103	PPAR-alpha dependent regulation of vanin-1 mediates hepatic lipid metabolism. Journal of Hepatology, 2014, 61, 366-372.	1.8	64
104	Integrated physiology and systems biology of PPARα. Molecular Metabolism, 2014, 3, 354-371.	3.0	481
105	Identification of human exercise-induced myokines using secretome analysis. Physiological Genomics, 2014, 46, 256-267.	1.0	146
106	Overexpression of PLIN5 in skeletal muscle promotes oxidative gene expression and intramyocellular lipid content without compromising insulin sensitivity. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2013, 1831, 844-852.	1.2	100
107	Short-Chain Fatty Acids Stimulate Angiopoietin-Like 4 Synthesis in Human Colon Adenocarcinoma Cells by Activating Peroxisome Proliferator-Activated Receptor Î ³ . Molecular and Cellular Biology, 2013, 33, 1303-1316.	1.1	219
108	Omega-3 long-chain fatty acids strongly induce angiopoietin-like 4 in humans. Journal of Lipid Research, 2013, 54, 615-621.	2.0	20

#	Article	IF	CITATIONS
109	Overexpression of Angiopoietin-Like Protein 4 Protects Against Atherosclerosis Development. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 1529-1537.	1.1	79
110	PS1 - 7. Long-term cold exposure down-regulates Angptl4 expression in brown adipocytes. Nederlands Tijdschrift Voor Diabetologie, 2013, 11, 146-147.	0.0	0
111	PS10 - 1. Fatty acid inducible myokine ANGPTL4 governs the lipid metabolic response to acute exercise. Nederlands Tijdschrift Voor Diabetologie, 2013, 11, 159-160.	0.0	0
112	PS10 - 4. Exercise training lowered hepatic fat in a steatotic mice model. Nederlands Tijdschrift Voor Diabetologie, 2013, 11, 161-162.	0.0	0
113	PS4 - 6. Hepatic vanin-1 is highly induced by PPAR-alpha and a key mediator of hepatic lipid metabolism in the fasted state. Nederlands Tijdschrift Voor Diabetologie, 2013, 11, 197-198.	0.0	Ο
114	Caspase-1 deficiency in mice reduces intestinal triglyceride absorption and hepatic triglyceride secretion. Journal of Lipid Research, 2013, 54, 448-456.	2.0	29
115	Dietary modulation of plasma angiopoietin-like protein 4 concentrations in healthy volunteers and in patients with type 2 diabetes. American Journal of Clinical Nutrition, 2013, 97, 255-260.	2.2	45
116	Reduced kidney lipoprotein lipase and renal tubule triglyceride accumulation in cisplatin-mediated acute kidney injury. American Journal of Physiology - Renal Physiology, 2012, 303, F437-F448.	1.3	24
117	Plasma mannose-binding lectin is stimulated by PPARα in humans. American Journal of Physiology - Endocrinology and Metabolism, 2012, 302, E595-E602.	1.8	20
118	Angiopoietin-like 4: a decade of research. Bioscience Reports, 2012, 32, 211-219.	1.1	210
119	Angiopoietin-Like Protein 4 is Differentially Regulated by Glucocorticoids and Insulin in vitro and in vivo in Healthy Humans. Experimental and Clinical Endocrinology and Diabetes, 2012, 120, 598-603.	0.6	34
120	The ATP-P2X7 Signaling Axis Is Dispensable for Obesity-Associated Inflammasome Activation in Adipose Tissue. Diabetes, 2012, 61, 1471-1478.	0.3	62
121	PS3 - 14. The effect of the exercise-induced muscle secretome on liver gene expression. Nederlands Tijdschrift Voor Diabetologie, 2012, 10, 108-109.	0.0	0
122	PS15 - 74. CD1d-restricted NKT cell function prevents insulin resistance in lean mice, and is regulated by adipocytes. Nederlands Tijdschrift Voor Diabetologie, 2012, 10, 151-151.	0.0	0
123	The Inflammatory Response in Acyl-CoA Oxidase 1 Deficiency (Pseudoneonatal Adrenoleukodystrophy). Endocrinology, 2012, 153, 2568-2575.	1.4	37
124	Detailed transcriptomics analysis of the effect of dietary fatty acids on gene expression in the heart. Physiological Genomics, 2012, 44, 352-361.	1.0	27
125	Activation of Natural Killer T Cells Promotes M2 Macrophage Polarization in Adipose Tissue and Improves Systemic Glucose Tolerance via Interleukin-4 (IL-4)/STAT6 Protein Signaling Axis in Obesity. Journal of Biological Chemistry, 2012, 287, 13561-13571.	1.6	182
126	G0/G1 switch gene-2 regulates human adipocyte lipolysis by affecting activity and localization of adipose triglyceride lipase. Journal of Lipid Research, 2012, 53, 2307-2317.	2.0	88

#	Article	IF	CITATIONS
127	Mechanisms of Gene Regulation by Fatty Acids. Advances in Nutrition, 2012, 3, 127-134.	2.9	243
128	Energy-sensing Factors Coactivator Peroxisome Proliferator-activated Receptor γ Coactivator 1-α (PGC-1α) and AMP-activated Protein Kinase Control Expression of Inflammatory Mediators in Liver. Journal of Biological Chemistry, 2012, 287, 1847-1860.	1.6	45
129	Re-evaluating lipotoxic triggers in skeletal muscle: Relating intramyocellular lipid metabolism to insulin sensitivity. Progress in Lipid Research, 2012, 51, 36-49.	5.3	114
130	Regulation of triglyceride metabolism by Angiopoietin-like proteins. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2012, 1821, 782-789.	1.2	145
131	Palmitic acid follows a different metabolic pathway than oleic acid in human skeletal muscle cells; lower lipolysis rate despite an increased level of adipose triglyceride lipase. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2012, 1821, 1323-1333.	1.2	28
132	Perilipin 2 Improves Insulin Sensitivity in Skeletal Muscle Despite Elevated Intramuscular Lipid Levels. Diabetes, 2012, 61, 2679-2690.	0.3	125
133	Linking nutritional regulation of Angptl4, Gpihbp1, and Lmf1 to lipoprotein lipase activity in rodent adipose tissue. BMC Physiology, 2012, 12, 13.	3.6	68
134	Mechanisms of Inflammatory Responses in Obese Adipose Tissue. Annual Review of Nutrition, 2012, 32, 261-286.	4.3	242
135	The lipid droplet coat protein perilipin 5 also localizes to muscle mitochondria. Histochemistry and Cell Biology, 2012, 137, 205-216.	0.8	136
136	Natural killer T cells in adipose tissue prevent insulin resistance. Journal of Clinical Investigation, 2012, 122, 3343-3354.	3.9	185
137	Pronounced Effects of Acute Endurance Exercise on Gene Expression in Resting and Exercising Human Skeletal Muscle. PLoS ONE, 2012, 7, e51066.	1.1	107
138	Saturated Fatty Acids and snoRNAs: Partners in Crime. Cell Metabolism, 2011, 14, 1-2.	7.2	3
139	A role for the peroxisomal 3-ketoacyl-CoA thiolase B enzyme in the control of PPARα-mediated upregulation of SREBP-2 target genes in the liver. Biochimie, 2011, 93, 876-891.	1.3	24
140	Calorie Restriction-like Effects of 30 Days of Resveratrol Supplementation on Energy Metabolism and Metabolic Profile in Obese Humans. Cell Metabolism, 2011, 14, 612-622.	7.2	1,072
141	ANGPTL4 modulates vascular junction integrity by integrin signaling and disruption of intercellular VE-cadherin and claudin-5 clusters. Blood, 2011, 118, 3990-4002.	0.6	203
142	Podocyte-secreted angiopoietin-like-4 mediates proteinuria in glucocorticoid-sensitive nephrotic syndrome. Nature Medicine, 2011, 17, 117-122.	15.2	277
143	The Effects of Long―or Mediumâ€Chain Fat Diets on Glucose Tolerance and Myocellular Content of Lipid Intermediates in Rats. Obesity, 2011, 19, 792-799.	1.5	19
144	Angiopoietin-like 4 Protein Elevates the Prosurvival Intracellular O2â^':H2O2 Ratio and Confers Anoikis Resistance to Tumors. Cancer Cell, 2011, 19, 401-415.	7.7	225

#	ARTICLE	IF	CITATIONS
145	PS7 - 38. Effects of acute endurance exercise on gene expression in skeletal muscle. Nederlands Tijdschrift Voor Diabetologie, 2011, 9, 117-117.	0.0	0
146	PS14 - 72. The lipid droplet coat protein perilipin 5 also localizes to muscle mitochondria. Nederlands Tijdschrift Voor Diabetologie, 2011, 9, 139-139.	0.0	0
147	Fight fat with DGAT. Journal of Lipid Research, 2011, 52, 591-592.	2.0	6
148	Comparative transcriptomic and metabolomic analysis of fenofibrate and fish oil treatments in mice. Physiological Genomics, 2011, 43, 1307-1318.	1.0	42
149	Regulation of Nutrient Metabolism and Inflammation. Results and Problems in Cell Differentiation, 2011, 52, 13-25.	0.2	14
150	Nutrigenomics of Fatty Acid Sensing. , 2011, , 173-184.		1
151	Transcriptional profiling reveals divergent roles of PPARα and PPARβ/δ in regulation of gene expression in mouse liver. Physiological Genomics, 2010, 41, 42-52.	1.0	113
152	Analysis of the heat shock response in mouse liver reveals transcriptional dependence on the nuclear receptor peroxisome proliferator-activated receptor α (PPARα). BMC Genomics, 2010, 11, 16.	1.2	38
153	Kupffer cells promote hepatic steatosis via interleukin-1β-dependent suppression of peroxisome proliferator-activated receptor α activity. Hepatology, 2010, 51, 511-522.	3.6	381
154	Reply:. Hepatology, 2010, 51, 722-722.	3.6	0
155	Adipose Tissue Dysfunction Signals Progression of Hepatic Steatosis Towards Nonalcoholic Steatohepatitis in C57Bl/6 Mice. Diabetes, 2010, 59, 3181-3191.	0.3	156
156	Metabolic switching of human myotubes is improved by n-3 fatty acids. Journal of Lipid Research, 2010, 51, 2090-2104.	2.0	59
157	Peroxisome Proliferator-Activated Receptor Alpha Target Genes. PPAR Research, 2010, 2010, 1-20.	1.1	584
158	Induction of Cardiac Angptl4 by Dietary Fatty Acids Is Mediated by Peroxisome Proliferator-Activated Receptor β∫δ and Protects Against Fatty Acid–Induced Oxidative Stress. Circulation Research, 2010, 106, 1712-1721.	2.0	118
159	Profiling of promoter occupancy by PPARα in human hepatoma cells via ChIP-chip analysis. Nucleic Acids Research, 2010, 38, 2839-2850.	6.5	112
160	Angiopoietin-like 4 Interacts with Matrix Proteins to Modulate Wound Healing*. Journal of Biological Chemistry, 2010, 285, 32999-33009.	1.6	113
161	LXRβ is the dominant LXR subtype in skeletal muscle regulating lipogenesis and cholesterol efflux. American Journal of Physiology - Endocrinology and Metabolism, 2010, 298, E602-E613.	1.8	26

162 PPARs: Important Regulators in Metabolism and Inflammation. , 2010, , 259-285.

1

#	Article	IF	CITATIONS
163	Modulation of plasma TG lipolysis by Angiopoietin-like proteins and GPIHBP1. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2010, 1801, 415-420.	1.2	64
164	Angptl4 Protects against Severe Proinflammatory Effects of Saturated Fat by Inhibiting Fatty Acid Uptake into Mesenteric Lymph Node Macrophages. Cell Metabolism, 2010, 12, 580-592.	7.2	225
165	The Inflammasome-Mediated Caspase-1 Activation Controls Adipocyte Differentiation and Insulin Sensitivity. Cell Metabolism, 2010, 12, 593-605.	7.2	558
166	Angiopoietin-Like 4 Interacts with Integrins β1 and β5 to Modulate Keratinocyte Migration. American Journal of Pathology, 2010, 177, 2791-2803.	1.9	105
167	Comparative Analysis of Gene Regulation by the Transcription Factor PPARα between Mouse and Human. PLoS ONE, 2009, 4, e6796.	1.1	245
168	Peroxisome Proliferator-activated Receptor Î ³ Regulates Expression of the Anti-lipolytic G-protein-coupled Receptor 81 (GPR81/Gpr81). Journal of Biological Chemistry, 2009, 284, 26385-26393.	1.6	76
169	Stabilizing lipoprotein lipase. Journal of Lipid Research, 2009, 50, 2335-2336.	2.0	1
170	Peroxisome Proliferator-Activated Receptor β/δ (PPARβ/Î1) but Not PPARα Serves as a Plasma Free Fatty Acid Sensor in Liver. Molecular and Cellular Biology, 2009, 29, 6257-6267.	1.1	123
171	Caloric Restriction and Exercise Increase Plasma ANGPTL4 Levels in Humans via Elevated Free Fatty Acids. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 969-974.	1.1	177
172	Dropping liver fat droplets. Hepatology, 2009, 50, 645-647.	3.6	1
173	Wageningen Nutritional Sciences Forum 2009: Too much, too little. European Journal of Clinical Nutrition, 2009, 63, S1-S4.	1.3	22
174	Angiopoietin-Like Proteins and Lipid Metabolism. , 2009, , 237-249.		4
175	Exploring the human PPAR alpha dependent transcriptome in primary human hepatocytes. Chemistry and Physics of Lipids, 2008, 154, S60.	1.5	0
176	Moderate alcohol consumption increases insulin sensitivity and ADIPOQ expression in postmenopausal women: a randomised, crossover trial. Diabetologia, 2008, 51, 1375-1381.	2.9	142
177	The roles of PPARα and PPARβ/δ in liver: Dietary versus endogenous fat sensor. Chemistry and Physics of Lipids, 2008, 154, S17.	1.5	4
178	The Glucocorticoid Receptor Controls Hepatic Dyslipidemia through Hes1. Cell Metabolism, 2008, 8, 212-223.	7.2	126
179	Peroxisome Proliferator-activated Receptor γ Activation Promotes Infiltration of Alternatively Activated Macrophages into Adipose Tissue. Journal of Biological Chemistry, 2008, 283, 22620-22627.	1.6	172
180	Peroxisome Proliferator Activated Receptors and Lipoprotein Metabolism. PPAR Research, 2008, 2008, 1-11.	1.1	107

#	Article	IF	CITATIONS
181	The PPARÎ ³ ligand rosiglitazone influences triacylglycerol metabolism in non-obese males, without increasing the transcriptional activity of PPARÎ ³ in the subcutaneous adipose tissue. British Journal of Nutrition, 2008, 99, 487-493.	1.2	3
182	Effect of Synthetic Dietary Triglycerides: A Novel Research Paradigm for Nutrigenomics. PLoS ONE, 2008, 3, e1681.	1.1	91
183	PPARs, Obesity, and Inflammation. PPAR Research, 2007, 2007, 1-10.	1.1	218
184	Genome-wide analysis of PPARα activation in murine small intestine. Physiological Genomics, 2007, 30, 192-204.	1.0	129
185	Peroxisome Proliferator-Activated Receptor α Protects against Obesity-Induced Hepatic Inflammation. Endocrinology, 2007, 148, 2753-2763.	1.4	168
186	Angptl4 Upregulates Cholesterol Synthesis in Liver via Inhibition of LPL- and HL-Dependent Hepatic Cholesterol Uptake. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 2420-2427.	1.1	157
187	Comprehensive Analysis of PPAR <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">id="E1"><mml:mi>α</mml:mi></mml:math> -Dependent Regulation of Hepatic Lipid Metabolism by Expression Profiling. PPAR Research, 2007, 2007, 1-13.	1.1	178
188	Design guidelines for the development of digital nutrigenomics learning material for heterogeneous target groups. American Journal of Physiology - Advances in Physiology Education, 2007, 31, 67-75.	0.8	12
189	PPARS and Obesity. PPAR Research, 2007, 2007, 1-1.	1.1	6
190	PPARα and dyslipidemia. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2007, 1771, 961-971.	1.2	187
191	Exploration of PPAR functions by microarray technology—A paradigm for nutrigenomics. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2007, 1771, 1046-1064.	1.2	43
192	The Interleukin-1 receptor antagonist is a direct target gene of PPARα in liver. Journal of Hepatology, 2007, 46, 869-877.	1.8	66
193	PPARαâ€dependent induction of the energy homeostasisâ€regulating nuclear receptor NR1i3 (CAR) in rat hepatocytes: Potential role in starvation adaptation. FEBS Letters, 2007, 581, 5617-5626.	1.3	37
194	Sulfonylureas and Glinides Exhibit Peroxisome Proliferator-Activated Receptor Î ³ Activity: A Combined Virtual Screening and Biological Assay Approach. Molecular Pharmacology, 2007, 71, 398-406.	1.0	49
195	Peroxisome proliferator-activated receptor expression is reduced in skeletal muscle in COPD. European Respiratory Journal, 2007, 30, 245-252.	3.1	139
196	Clycogen synthase 2 is a novel target gene of peroxisome proliferator-activated receptors. Cellular and Molecular Life Sciences, 2007, 64, 1145-1157.	2.4	67
197	Regulation of Lipogenic Genes in Obesity. , 2006, , 208-219.		3
198	Fasting-induced adipose factor/ angiopoietin-like protein 4: a potential target for dyslipidemia?. Future Lipidology, 2006, 1, 227-236.	0.5	27

#	Article	IF	CITATIONS
199	Peroxisome Proliferator-Activated Receptor-α-Null Mice Have Increased White Adipose Tissue Glucose Utilization, GLUT4, and Fat Mass: Role in Liver and Brain. Endocrinology, 2006, 147, 4067-4078.	1.4	73
200	PPARÎ ³ activity in subcutaneous abdominal fat tissue and fat mass gain during short-term overfeeding. International Journal of Obesity, 2006, 30, 302-307.	1.6	22
201	Peroxisome Proliferator-Activated Receptor α Mediates the Effects of High-Fat Diet on Hepatic Gene Expression. Endocrinology, 2006, 147, 1508-1516.	1.4	272
202	The Fasting-induced Adipose Factor/Angiopoietin-like Protein 4 Is Physically Associated with Lipoproteins and Governs Plasma Lipid Levels and Adiposity. Journal of Biological Chemistry, 2006, 281, 934-944.	1.6	366
203	The GO/G1 switch gene 2 is a novel PPAR target gene. Biochemical Journal, 2005, 392, 313-324.	1.7	190
204	Regulation of lipid metabolism via angiopoietin-like proteins. Biochemical Society Transactions, 2005, 33, 1059.	1.6	106
205	Promoter Rearrangements Cause Species-specific Hepatic Regulation of the Glyoxylate Reductase/Hydroxypyruvate Reductase Gene by the Peroxisome Proliferator-activated Receptor α. Journal of Biological Chemistry, 2005, 280, 24143-24152.	1.6	21
206	Angiopoietin-like-4 is a potential angiogenic mediator in arthritis. Clinical Immunology, 2005, 115, 93-101.	1.4	69
207	The Direct Peroxisome Proliferator-activated Receptor Target Fasting-induced Adipose Factor (FIAF/PGAR/ANGPTL4) Is Present in Blood Plasma as a Truncated Protein That Is Increased by Fenofibrate Treatment. Journal of Biological Chemistry, 2004, 279, 34411-34420.	1.6	229
208	In vivo activation of PPAR target genes by RXR homodimers. EMBO Journal, 2004, 23, 2083-2091.	3.5	172
209	Peroxisome proliferator-activated receptor a target genes. Cellular and Molecular Life Sciences, 2004, 61, 393-416.	2.4	874
210	PPARα governs glycerol metabolism. Journal of Clinical Investigation, 2004, 114, 94-103.	3.9	207
211	PPARα governs glycerol metabolism. Journal of Clinical Investigation, 2004, 114, 94-103.	3.9	121
212	Understanding the Coordinated Effects of PPARs on Lipid Metabolism Using Microarrays. , 2004, , 249-263.		0
213	Peroxisome proliferator activated receptor ligands for the treatment of insulin resistance. Current Opinion in Investigational Drugs, 2004, 5, 1045-50.	2.3	19
214	Nutrigenomics: goals and strategies. Nature Reviews Genetics, 2003, 4, 315-322.	7.7	566
215	Effects of fatty acids on gene expression: role of peroxisome proliferator-activated receptor α, liver X receptor α and sterol regulatory element-binding protein-1c. Proceedings of the Nutrition Society, 2002, 61, 371-374.	0.4	38
216	Peroxisome proliferator activated receptors and obesity. European Journal of Pharmacology, 2002, 440, 223-234.	1.7	123

#	Article	IF	CITATIONS
217	Peroxisome Proliferator Activated Receptor Alpha Coordinates Intermediary Metabolism During Fasting. Medical Science Symposia Series, 2002, , 1-4.	0.0	0
218	Mechanisms of nutritional and hormonal regulation of lipogenesis. EMBO Reports, 2001, 2, 282-286.	2.0	506
219	The peroxisome proliferatorâ€activated receptor α regulates amino acid metabolism. FASEB Journal, 2001, 15, 1971-1978.	0.2	198
220	Roles of PPARs in health and disease. Nature, 2000, 405, 421-424.	13.7	1,782
221	Characterization of the Fasting-induced Adipose Factor FIAF, a Novel Peroxisome Proliferator-activated Receptor Target Gene. Journal of Biological Chemistry, 2000, 275, 28488-28493.	1.6	481
222	Peroxisome proliferator activated receptor agonists. Exs, 2000, 89, 141-151.	1.4	65
223	Peroxisome proliferator–activated receptor α mediates the adaptive response to fasting. Journal of Clinical Investigation, 1999, 103, 1489-1498.	3.9	1,423
224	Auto-silencing by the retinoid X receptor 1 1Edited by M. Yaniv. Journal of Molecular Biology, 1998, 284, 21-32.	2.0	37
225	The DNA Binding Pattern of the Retinoid X Receptor Is Regulated by Ligand-dependent Modulation of Its Oligomeric State. Journal of Biological Chemistry, 1997, 272, 12771-12777.	1.6	26
226	The Tetramerization Region of the Retinoid X Receptor Is Important for Transcriptional Activation by the Receptor. Journal of Biological Chemistry, 1997, 272, 29759-29768.	1.6	35
227	Individual Subunits of Heterodimers Comprised of Retinoic Acid and Retinoid X Receptors Interact with Their Ligands Independently. Biochemistry, 1996, 35, 3816-3824.	1.2	54
228	Retinoid X receptor alpha forms tetramers in solution Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 8645-8649.	3.3	95
229	On the Role of Ligand in Retinoid Signaling: Positive Cooperativity in the Interactions of 9-cis Retinoic Acid with Tetramers of the Retinoid X Receptor. Biochemistry, 1995, 34, 14263-14269.	1.2	37
230	Role of Ligand in Retinoid Signaling. 9-cis-Retinoic Acid Modulates the Oligomeric State of the Retinoid X Receptor. Biochemistry, 1995, 34, 13717-13721.	1.2	51