
John S L Parker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9329931/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Paradoxes of Viral mRNA Translation during Mammalian Orthoreovirus Infection. Viruses, 2021, 13, 275.	3.3	5
2	The multi-functional reovirus Ïf3 protein is a virulence factor that suppresses stress granule formation and is associated with myocardial injury. PLoS Pathogens, 2021, 17, e1009494.	4.7	16
3	Reovirus Nonstructural Protein σNS Recruits Viral RNA to Replication Organelles. MBio, 2021, 12, e0140821.	4.1	11
4	Tracking Veterinary Students Who Aspire to Careers in Science. Journal of Veterinary Medical Education, 2020, 47, 100-105.	0.6	3
5	Reovirus Ïf 3 Protein Limits Interferon Expression and Cell Death Induction. Journal of Virology, 2020, 94, .	3.4	8
6	Mammalian orthoreovirus Infection is Enhanced in Cells Pre-Treated with Sodium Arsenite. Viruses, 2019, 11, 563.	3.3	9
7	Simultaneous multiplexed amplicon sequencing and transcriptome profiling in single cells. Nature Methods, 2019, 16, 59-62.	19.0	68
8	Conserved Surface Residues on the Feline Calicivirus Capsid Are Essential for Interaction with Its Receptor Feline Junctional Adhesion Molecule A (fJAM-A). Journal of Virology, 2018, 92, .	3.4	12
9	A pLOT of Viral Persistence. Cell Host and Microbe, 2018, 24, 618-619.	11.0	0
10	Sequence analysis of feline immunoglobulin mRNAs and the development of a felinized monoclonal antibody specific to feline panleukopenia virus. Scientific Reports, 2017, 7, 12713.	3.3	2
11	Bacterial Filtration Efficiency of Green Soy Protein Based Nanofiber Air Filter. Journal of Nanoscience and Nanotechnology, 2014, 14, 4891-4898.	0.9	48
12	Virus-Mediated Compartmentalization of the Host Translational Machinery. MBio, 2014, 5, e01463-14.	4.1	73
13	The Cellular Chaperone Hsc70 Is Specifically Recruited to Reovirus Viral Factories Independently of Its Chaperone Function. Journal of Virology, 2012, 86, 1079-1089.	3.4	27
14	Micro-total analysis system for virus detection: microfluidic pre-concentration coupled to liposome-based detection. Analytical and Bioanalytical Chemistry, 2012, 402, 315-323.	3.7	59
15	A Proapoptotic Peptide Derived from Reovirus Outer Capsid Protein Â1 Has Membrane-Destabilizing Activity. Journal of Virology, 2011, 85, 1507-1516.	3.4	9
16	Distribution of the Feline Calicivirus Receptor Junctional Adhesion Molecule A in Feline Tissues. Veterinary Pathology, 2011, 48, 361-368.	1.7	17
17	Reovirus Infection or Ectopic Expression of Outer Capsid Protein μ1 Induces Apoptosis Independently of the Cellular Proapoptotic Proteins Bax and Bak. Journal of Virology, 2011, 85, 296-304.	3.4	27
18	Conformational Changes in the Capsid of a Calicivirus upon Interaction with Its Functional Receptor. Journal of Virology, 2010, 84, 5550-5564.	3.4	57

JOHN S L PARKER

#	Article	IF	CITATIONS
19	Characterization of a continuous feline mammary epithelial cell line susceptible to feline epitheliotropic viruses. Journal of Virological Methods, 2009, 157, 105-110.	2.1	7
20	Molecular Virology of Feline Calicivirus. Veterinary Clinics of North America - Small Animal Practice, 2008, 38, 775-786.	1.5	51
21	Independent Regulation of Reovirus Membrane Penetration and Apoptosis by the μ1 φ Domain. PLoS Pathogens, 2008, 4, e1000248.	4.7	71
22	Identification of Regions and Residues in Feline Junctional Adhesion Molecule Required for Feline Calicivirus Binding and Infection. Journal of Virology, 2007, 81, 13608-13621.	3.4	41
23	Feline caliciviruses (FCVs) isolated from cats with virulent systemic disease possess in vitro phenotypes distinct from those of other FCV isolates. Journal of General Virology, 2007, 88, 506-517.	2.9	56
24	Reovirus Outer Capsid Protein μ1 Induces Apoptosis and Associates with Lipid Droplets, Endoplasmic Reticulum, and Mitochondria. Journal of Virology, 2006, 80, 8422-8438.	3.4	90
25	Putative Autocleavage of Outer Capsid Protein μ1, Allowing Release of Myristoylated Peptide μ1N during Particle Uncoating, Is Critical for Cell Entry by Reovirus. Journal of Virology, 2004, 78, 8732-8745.	3.4	120
26	Increased Ubiquitination and Other Covariant Phenotypes Attributed to a Strain- and Temperature-Dependent Defect of Reovirus Core Protein μ2. Journal of Virology, 2004, 78, 10291-10302.	3.4	25
27	Reovirus Nonstructural Protein μNS Recruits Viral Core Surface Proteins and Entering Core Particles to Factory-Like Inclusions. Journal of Virology, 2004, 78, 1882-1892.	3.4	91
28	Nucleoside and RNA Triphosphatase Activities of Orthoreovirus Transcriptase Cofactor μ2. Journal of Biological Chemistry, 2004, 279, 4394-4403.	3.4	60
29	Comparisons of the M1 genome segments and encoded mu2 proteins of different reovirus isolates. Virology Journal, 2004, 1, 6.	3.4	42
30	The Natural Host Range Shift and Subsequent Evolution of Canine Parvovirus Resulted from Virus-Specific Binding to the Canine Transferrin Receptor. Journal of Virology, 2003, 77, 1718-1726.	3.4	208
31	Reovirus σNS Protein Localizes to Inclusions through an Association Requiring the μNS Amino Terminus. Journal of Virology, 2003, 77, 4566-4576.	3.4	73
32	The δRegion of Outer-Capsid Proteinμ1 Undergoes Conformational Change and Release from ReovirusParticles during CellEntry. Journal of Virology, 2003, 77, 13361-13375.	3.4	88
33	Mammalian Reovirus Nonstructural Protein μNS Forms Large Inclusions and Colocalizes with Reovirus Microtubule-Associated Protein μ2 in Transfected Cells. Journal of Virology, 2002, 76, 8285-8297.	3.4	123
34	Reovirus Core Protein μ2 Determines the Filamentous Morphology of Viral Inclusion Bodies by Interacting with and Stabilizing Microtubules. Journal of Virology, 2002, 76, 4483-4496.	3.4	174
35	Canine and Feline Parvoviruses Can Use Human or Feline Transferrin Receptors To Bind, Enter, and Infect Cells. Journal of Virology, 2001, 75, 3896-3902.	3.4	209
36	Early Stages of Influenza Virus Entry into Mv-1 Lung Cells: Involvement of Dynamin. Virology, 2000, 267, 17-28.	2.4	52

#	Article	IF	CITATIONS
37	Cellular Uptake and Infection by Canine Parvovirus Involves Rapid Dynamin-Regulated Clathrin-Mediated Endocytosis, Followed by Slower Intracellular Trafficking. Journal of Virology, 2000, 74, 1919-1930.	3.4	124
38	Assaying for Structural Variation in the Parvovirus Capsid and Its Role in Infection. Virology, 1998, 250, 106-117.	2.4	91
39	Structural Analysis of a Mutation in Canine Parvovirus Which Controls Antigenicity and Host Range. Virology, 1996, 225, 65-71.	2.4	78