Igor Branchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9328516/publications.pdf

Version: 2024-02-01

66911 57758 6,668 93 44 78 citations h-index g-index papers 99 99 99 7768 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The impact of the prolonged COVID-19 pandemic on stress resilience and mental health: A critical review across waves. European Neuropsychopharmacology, 2022, 55, 22-83.	0.7	200
2	Plasticity in mental health: A network theory. Neuroscience and Biobehavioral Reviews, 2022, 138, 104691.	6.1	8
3	Recentering neuroscience on behavior: The interface between brain and environment is a privileged level of control of neural activity. Neuroscience and Biobehavioral Reviews, 2022, 138, 104678.	6.1	10
4	Time moderates the interplay between 5-HTTLPR and stress on depression risk: gene x environment interaction as a dynamic process. Translational Psychiatry, 2022, 12, .	4.8	9
5	A peripheral inflammatory signature discriminates bipolar from unipolar depression: A machine learning approach. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2021, 105, 110136.	4.8	49
6	The Intellicage system provides a reproducible and standardized method to assess behavioral changes in cuprizone-induced demyelination mouse model. Behavioural Brain Research, 2021, 400, 113039.	2.2	4
7	Higher baseline interleukin- $\hat{1}^2$ and TNF- $\hat{1}^\pm$ hamper antidepressant response in major depressive disorder. European Neuropsychopharmacology, 2021, 42, 35-44.	0.7	25
8	Shaping therapeutic trajectories in mental health: Instructive vs. permissive causality. European Neuropsychopharmacology, 2021, 43, 1-9.	0.7	19
9	Brain-immune crosstalk in the treatment of major depressive disorder. European Neuropsychopharmacology, 2021, 45, 89-107.	0.7	41
10	Adiponectin predicts poor response to antidepressant drugs in major depressive disorder. Human Psychopharmacology, 2021, 36, e2793.	1.5	3
11	Viewpoint European COVID-19 exit strategy for people with severe mental disorders: Too little, but not yet too late. Brain, Behavior, and Immunity, 2021, 94, 15-17.	4.1	17
12	Severe mental illness and European COVID-19 vaccination strategies. Lancet Psychiatry, the, 2021, 8, 356-359.	7.4	50
13	Selecting antidepressants according to a drug-by-environment interaction: A comparison of fluoxetine and minocycline effects in mice living either in enriched or stressful conditions. Behavioural Brain Research, 2021, 408, 113256.	2.2	11
14	Mental disorders and risk of COVID-19-related mortality, hospitalisation, and intensive care unit admission: a systematic review and meta-analysis. Lancet Psychiatry, the, 2021, 8, 797-812.	7.4	202
15	Microglial-glucocorticoid receptor depletion alters the response of hippocampal microglia and neurons in a chronic unpredictable mild stress paradigm in female mice. Brain, Behavior, and Immunity, 2021, 97, 423-439.	4.1	31
16	Stress resilience during the coronavirus pandemic. European Neuropsychopharmacology, 2020, 35, 12-16.	0.7	285
17	Interplay between inflammation and neural plasticity: Both immune activation and suppression impair LTP and BDNF expression. Brain, Behavior, and Immunity, 2019, 81, 484-494.	4.1	84
18	Predicting antidepressant treatment outcome based on socioeconomic status and citalopram dose. Pharmacogenomics Journal, 2019, 19, 538-546.	2.0	23

#	Article	IF	CITATIONS
19	Combined Fluoxetine and Metformin Treatment Potentiates Antidepressant Efficacy Increasing IGF2 Expression in the Dorsal Hippocampus. Neural Plasticity, 2019, 2019, 1-12.	2.2	32
20	Psychedelics and the essential importance of context. Journal of Psychopharmacology, 2018, 32, 725-731.	4.0	357
21	Quantitative and Qualitative Features of Neonatal Vocalizations in Mice. Handbook of Behavioral Neuroscience, 2018, , 139-147.	0.7	6
22	Fluoxetine effects on molecular, cellular and behavioral endophenotypes of depression are driven by the living environment. Molecular Psychiatry, 2017, 22, 552-561.	7.9	150
23	Hippocampus-related effects of fluoxetine treatment under stressful vs enriched conditions. Molecular Psychiatry, 2017, 22, 483-483.	7.9	6
24	Citalopram amplifies the influence of living conditions on mood in depressed patients enrolled in the STAR*D study. Translational Psychiatry, 2017, 7, e1066-e1066.	4.8	50
25	Electrophysiological Properties of CA1 Pyramidal Neurons along the Longitudinal Axis of the Mouse Hippocampus. Scientific Reports, 2016, 6, 38242.	3.3	69
26	SSRI treatment outcome is driven by the quality of the living environment. European Neuropsychopharmacology, 2016, 26, S133.	0.7	0
27	Fluoxetine treatment affects the inflammatory response and microglial function according to the quality of the living environment. Brain, Behavior, and Immunity, 2016, 58, 261-271.	4.1	96
28	Dark microglia: A new phenotype predominantly associated with pathological states. Glia, 2016, 64, 826-839.	4.9	325
29	Fractalkine receptor deficiency impairs microglial and neuronal responsiveness to chronic stress. Brain, Behavior, and Immunity, 2016, 55, 114-125.	4.1	192
30	Beneficial and Adverse Consequences of Increased Brain Plasticity: the Interplay Among Serotonin, Susceptibility to the Environment and Depression. European Psychiatry, 2015, 30, 36.	0.2	0
31	Gender-dependent resiliency to stressful and metabolic challenges following prenatal exposure to high-fat diet in the p66ShcA¢Ë†â€™/− mouse. Frontiers in Behavioral Neuroscience, 2014, 8, 285.	2.0	35
32	The role of microglia in mediating the effect of the environment in brain plasticity and behavior. Frontiers in Cellular Neuroscience, 2014, 8, 390.	3.7	31
33	Early experiences: Building up the tools to face the challenges of adult life. Developmental Psychobiology, 2014, 56, 1661-1674.	1.6	34
34	l-DOPA reverses the impairment of Dentate Gyrus LTD in experimental parkinsonism via \hat{l}^2 -adrenergic receptors. Experimental Neurology, 2014, 261, 377-385.	4.1	9
35	A Role for Ultrasonic Vocalisation in Social Communication and Divergence of Natural Populations of the House Mouse (Mus musculus domesticus). PLoS ONE, 2014, 9, e97244.	2.5	59
36	Early interactions with mother and peers independently build adult social skills and shape BDNF and oxytocin receptor brain levels. Psychoneuroendocrinology, 2013, 38, 522-532.	2.7	101

#	Article	IF	CITATIONS
37	Not all stressors are equal: Early social enrichment favors resilience to social but not physical stress in male mice. Hormones and Behavior, 2013, 63, 503-509.	2.1	44
38	Active and passive avoidance., 2013,, 291-298.		3
39	Antidepressant Treatment Outcome Depends on the Quality of the Living Environment: A Pre-Clinical Investigation in Mice. PLoS ONE, 2013, 8, e62226.	2.5	79
40	Ontogeny of Stable Individual Differences. , 2013, , 278-316.		5
41	Anxiety-like behaviour and associated neurochemical and endocrinological alterations in male pups exposed to prenatal stress. Psychoneuroendocrinology, 2012, 37, 1646-1658.	2.7	108
42	Role of neuroinflammation in hypertension-induced brain amyloid pathology. Neurobiology of Aging, 2012, 33, 205.e19-205.e29.	3.1	83
43	Hypertension Induces Brain \hat{l}^2 -Amyloid Accumulation, Cognitive Impairment, and Memory Deterioration Through Activation of Receptor for Advanced Glycation End Products in Brain Vasculature. Hypertension, 2012, 60, 188-197.	2.7	199
44	Effects of Spatial and Cognitive Enrichment on Activity Pattern and Learning Performance in Three Strains of Mice in the IntelliMaze. Behavior Genetics, 2012, 42, 449-460.	2.1	28
45	The reciprocal interaction between serotonin and social behaviour. Neuroscience and Biobehavioral Reviews, 2012, 36, 786-798.	6.1	158
46	Daily serum and salivary BDNF levels correlate with morning-evening personality type in women and are affected by light therapy. Rivista Di Psichiatria, 2012, 47, 527-34.	0.6	23
47	CX3CR1 deficiency alters hippocampal-dependent plasticity phenomena blunting the effects of enriched environment. Frontiers in Cellular Neuroscience, 2011 , 5 , 22 .	3.7	124
48	Epigenetic modifications induced by early enrichment are associated with changes in timing of induction of BDNF expression. Neuroscience Letters, 2011, 495, 168-172.	2.1	76
49	The richness of social stimuli shapes developmental trajectories: Are laboratory mouse pups impoverished?. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2011, 35, 1452-1460.	4.8	16
50	The double edged sword of neural plasticity: Increasing serotonin levels leads to both greater vulnerability to depression and improved capacity to recover. Psychoneuroendocrinology, 2011, 36, 339-351.	2.7	121
51	In search of the biological basis of mood disorders: Exploring out of the mainstream. Psychoneuroendocrinology, 2011, 36, 305-307.	2.7	3
52	An evolutionary perspective for contemporary psychiatric research. Rivista Di Psichiatria, 2011, 46, 288-91.	0.6	1
53	Shaping brain development: Mouse communal nesting blunts adult neuroendocrine and behavioral response to social stress and modifies chronic antidepressant treatment outcome. Psychoneuroendocrinology, 2010, 35, 743-751.	2.7	53
54	Early life influences on emotional reactivity: Evidence that social enrichment has greater effects than handling on anxiety-like behaviors, neuroendocrine responses to stress and central BDNF levels. Neuroscience and Biobehavioral Reviews, 2010, 34, 808-820.	6.1	96

#	Article	IF	CITATIONS
55	Consistent behavioral phenotype differences between inbred mouse strains in the IntelliCage. Genes, Brain and Behavior, 2010, 9, 722-731.	2.2	121
56	Striatal 6-OHDA lesion in mice: Investigating early neurochemical changes underlying Parkinson's disease. Behavioural Brain Research, 2010, 208, 137-143.	2.2	45
57	Early social enrichment provided by communal nest increases resilience to depression-like behavior more in female than in male mice. Behavioural Brain Research, 2010, 215, 71-76.	2.2	34
58	P.2.b.018 Mouse communal nest: early social enrichment blunts adult depression-like phenotype altering BDNF epigenetic structure. European Neuropsychopharmacology, 2010, 20, S363-S364.	0.7	0
59	Vocal repertoire in mouse pups: strain differences. Handbook of Behavioral Neuroscience, 2010, , 89-95.	0.7	4
60	Changes in plasma levels of BDNF and NGF reveal a gender-selective vulnerability to early adversity in rhesus macaques. Psychoneuroendocrinology, 2009, 34, 172-180.	2.7	61
61	The mouse communal nest: Investigating the epigenetic influences of the early social environment on brain and behavior development. Neuroscience and Biobehavioral Reviews, 2009, 33, 551-559.	6.1	138
62	Birth spacing in the mouse communal nest shapes adult emotional and social behavior. Physiology and Behavior, 2009, 96, 532-539.	2.1	24
63	Nonmotor symptoms in Parkinson's disease: Investigating earlyâ€phase onset of behavioral dysfunction in the 6â€hydroxydopamineâ€lesioned rat model. Journal of Neuroscience Research, 2008, 86, 2050-2061.	2.9	110
64	Communal nesting, an early social enrichment, affects social competences but not learning and memory abilities at adulthood. Behavioural Brain Research, 2007, 183, 60-66.	2.2	67
65	Scoring Learning and Memory in Developing Rodents. Current Protocols in Toxicology / Editorial Board, Mahin D Maines (editor-in-chief) [et Al], 2006, 27, Unit13.11.	1.1	0
66	Analysis of Ultrasonic Vocalizations Emitted by Infant Rodents. Current Protocols in Toxicology / Editorial Board, Mahin D Maines (editor-in-chief) [et Al], 2006, 30, Unit13.12.	1.1	21
67	Early Social Enrichment Shapes Social Behavior and Nerve Growth Factor and Brain-Derived Neurotrophic Factor Levels in the Adult Mouse Brain. Biological Psychiatry, 2006, 60, 690-696.	1.3	207
68	Communal nesting, an early social enrichment, increases the adult anxiety-like response and shapes the role of social context in modulating the emotional behavior. Behavioural Brain Research, 2006, 172, 299-306.	2.2	71
69	NGF: A social molecule. Psychoneuroendocrinology, 2006, 31, 295-296.	2.7	15
70	Early social enrichment augments adult hippocampal BDNF levels and survival of BrdU-positive cells while increasing anxiety- and "depression―like behavior. Journal of Neuroscience Research, 2006, 83, 965-973.	2.9	116
71	Early Developmental Exposure to BDE 99 or Aroclor 1254 Affects Neurobehavioural Profile: Interference from the Administration Route. NeuroToxicology, 2005, 26, 183-192.	3.0	91
72	Overview of Behavioral Teratology. , 2005, Chapter 13, Unit13.7.		0

#	Article	IF	CITATIONS
73	Rhes Is Involved in Striatal Function. Molecular and Cellular Biology, 2004, 24, 5788-5796.	2.3	63
74	Utilisation of a physically-enriched environment by laboratory mice: age and gender differences. Applied Animal Behaviour Science, 2004, 88, 149-162.	1.9	10
75	Neonatal behaviors associated with ultrasonic vocalizations in mice (mus musculus): A slow-motion analysis. Developmental Psychobiology, 2004, 44, 37-44.	1.6	39
76	Differential in vitro neurotoxicity of the flame retardant PBDE-99 and of the PCB Aroclor 1254 in human astrocytoma cells. Toxicology Letters, 2004, 154, 11-21.	0.8	119
77	Long-term effects of the periadolescent environment on exploratory activity and aggressive behaviour in mice: social versus physical enrichment. Physiology and Behavior, 2004, 81, 443-453.	2.1	100
78	Scopolamine effects on ultrasonic vocalization emission and behavior in the neonatal mouse. Behavioural Brain Research, 2004, 151, 9-16.	2.2	26
79	Transgenic Mouse In Vivo Library of Human Down Syndrome Critical Region 1. Journal of Neuropathology and Experimental Neurology, 2004, 63, 429-440.	1.7	85
80	Epigenetic control of neurobehavioural plasticity: the role of neurotrophins. Behavioural Pharmacology, 2004, 15, 353-362.	1.7	110
81	Refining learning and memory assessment in laboratory rodents. An ethological perspective. Annali Dell'Istituto Superiore Di Sanita, 2004, 40, 231-6.	0.4	16
82	Animal models of mental retardation: from gene to cognitive function. Neuroscience and Biobehavioral Reviews, 2003, 27, 141-153.	6.1	46
83	Polybrominated Diphenyl Ethers: Neurobehavioral Effects Following Developmental Exposure. NeuroToxicology, 2003, 24, 449-462.	3.0	235
84	A new easy accessible and low-cost method for screening olfactory sensitivity in mice: Behavioural and nociceptive response in male and female CD-1 mice upon exposure to millipede aversive odour. Brain Research Bulletin, 2002, 58, 193-202.	3.0	7
85	Effects of Perinatal Exposure to a Polybrominated Diphenyl Ether (PBDE 99) on Mouse Neurobehavioural Development. NeuroToxicology, 2002, 23, 375-384.	3.0	177
86	Transgenic and knock-out mouse pups: the growing need for behavioral analysis. Genes, Brain and Behavior, 2002, 1, 135-141.	2.2	67
87	Ultrasonic vocalisation emitted by infant rodents: a tool for assessment of neurobehavioural development. Behavioural Brain Research, 2001, 125, 49-56.	2.2	295
88	Prenatal exposure to anti-HIV drugs. Neurotoxicology and Teratology, 2000, 22, 369-379.	2.4	12
89	Learning performances, brain NGF distribution and NPY levels in transgenic mice expressing TNF-alpha. Behavioural Brain Research, 2000, 112, 165-175.	2.2	87
90	Long-term effects of prenatal 3'-azido-3'-deoxythymidine (AZT) exposure on intermale aggressive behaviour of mice. Psychopharmacology, 1999, 145, 317-323.	3.1	12

IGOR BRANCHI

#	Article	IF	CITATION
91	Effects of Prenatal AZT on Mouse Neurobehavioral Development and Passive Avoidance Learning. Neurotoxicology and Teratology, 1999, 21, 29-40.	2.4	33
92	Neurobehavioral Effects of Prenatal Lamivudine (3TC) Exposure in Preweaning Mice. Neurotoxicology and Teratology, 1999, 21, 365-373.	2.4	15
93	Ultrasonic vocalizations by infant laboratory mice: A preliminary spectrographic characterization under different conditions. Developmental Psychobiology, 1998, 33, 249-256.	1.6	129