
Jakob Kjelstrup-Hansen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9327624/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Thermo-optic control of dielectric-loaded plasmonic waveguide components. Optics Express, 2010, 18, 1207.	3.4	169
2	Mapping surface plasmon polariton propagation via counter-propagating light pulses. Optics Express, 2012, 20, 12877.	3.4	60
3	The Interplay between Localized and Propagating Plasmonic Excitations Tracked in Space and Time. Nano Letters, 2014, 14, 2431-2435.	9.1	41
4	Role of the Charge-Transfer State in Reduced Langevin Recombination in Organic Solar Cells: A Theoretical Study. Journal of Physical Chemistry C, 2015, 119, 26588-26597.	3.1	38
5	Charge transport in oligo phenylene and phenylene–thiophene nanofibers. Organic Electronics, 2009, 10, 1228-1234.	2.6	27
6	Organic surface-grown nanowires for functional devices. Reports on Progress in Physics, 2013, 76, 126502.	20.1	27
7	DC Characterisation of C60 Whiskers and Nanowhiskers. ECS Transactions, 2006, 2, 27-38.	0.5	26
8	AC-biased organic light-emitting field-effect transistors from naphthyl end-capped oligothiophenes. Organic Electronics, 2010, 11, 1096-1102.	2.6	26
9	Morphological Tuning of the Plasmon Dispersion Relation in Dielectric-Loaded Nanofiber Waveguides. Physical Review Letters, 2013, 111, 046802.	7.8	25
10	The complex dispersion relation of surface plasmon polaritons at gold/para-hexaphenylene interfaces. Applied Physics B: Lasers and Optics, 2014, 116, 585-591.	2.2	25
11	Mechanical Properties of Organic Nanofibers. Small, 2006, 2, 660-666.	10.0	24
12	Semiconducting Supramolecular Organic Frameworks Assembled from a Near-Infrared Fluorescent Macrocyclic Probe and Fullerenes. Journal of the American Chemical Society, 2020, 142, 11497-11505.	13.7	24
13	Efficient Rollâ€On Transfer Technique for Wellâ€Aligned Organic Nanofibers. Small, 2011, 7, 2460-2463.	10.0	23
14	Modeling Multijunction Solar Cells by Nonlocal Tunneling and Subcell Analysis. IEEE Journal of Photovoltaics, 2018, 8, 1363-1369.	2.5	23
15	Multi-walled carbon nanotubes integrated in microcantilevers for application of tensile strain. Ultramicroscopy, 2005, 105, 209-214.	1.9	22
16	Electrical properties of a single p-hexaphenylene nanofiber. Thin Solid Films, 2006, 515, 827-830.	1.8	22
17	Surface Plasmon Polariton Emission Prompted by Organic Nanofibers on Thin Gold Films. Plasmonics, 2012, 7, 253-260.	3.4	22
18	Low-voltage organic phototransistors based on naphthyl end-capped oligothiophene nanofibers. Organic Electronics, 2014, 15, 1273-1281.	2.6	22

JAKOB KJELSTRUP-HANSEN

#	Article	IF	CITATIONS
19	Transparent and conductive electrodes by large-scale nano-structuring of noble metal thin-films. Optical Materials Express, 2018, 8, 1733.	3.0	21
20	Charge-carrier injection assisted by space-charge field in AC-driven organic light-emitting transistors. Organic Electronics, 2011, 12, 1724-1730.	2.6	19
21	Microelectromechanical strain and pressure sensors based on electric field aligned carbon cone and carbon black particles in a silicone elastomer matrix. Journal of Applied Physics, 2012, 112, .	2.5	18
22	Surface plasmon polariton propagation in organic nanofiber based plasmonic waveguides. Optics Express, 2013, 21, 8251.	3.4	17
23	Electrical conductivity of organic single-nanofiber devices with different contact materials. Organic Electronics, 2007, 8, 540-544.	2.6	16
24	Transparency Enhancement for Photoinitiated Polymerization (UV Curing) through Magnetic Field Alignment in a Piezoresistive Metal/Polymer Composite. ACS Applied Materials & Interfaces, 2014, 6, 3469-3476.	8.0	16
25	Structural stability of naphthyl end-capped oligothiophenes in organic field-effect transistors measured by grazing-incidence X-ray diffraction in operando. Organic Electronics, 2017, 49, 375-381.	2.6	16
26	In situ–Directed Growth of Organic Nanofibers and Nanoflakes: Electrical and Morphological Properties. Nanoscale Research Letters, 2011, 6, 11.	5.7	15
27	Carbon nanotube forests: a non-stick workbench for nanomanipulation. Nanotechnology, 2006, 17, 4917-4922.	2.6	14
28	On the suitability of carbon nanotube forests as non-stick surfaces for nanomanipulation. Soft Matter, 2008, 4, 392.	2.7	14
29	Organic nanofibers integrated by transfer technique in field-effect transistor devices. Nanoscale Research Letters, 2011, 6, 319.	5.7	14
30	Multicolor nanofiber based organic light-emitting transistors. Organic Electronics, 2013, 14, 3324-3330.	2.6	14
31	A strain sensor based on an aligned carbon particle string in a UV-cured polymer matrix. Applied Physics Letters, 2011, 99, .	3.3	12
32	Individual strings of conducting carbon cones and discs in a polymer matrix: Electric fieldâ€induced alignment and their use as a strain sensor. Journal of Polymer Science, Part B: Polymer Physics, 2012, 50, 477-483.	2.1	12
33	Efficient Exciton Diffusion and Resonance-Energy Transfer in Multilayered Organic Epitaxial Nanofibers. Journal of Physical Chemistry C, 2015, 119, 15689-15697.	3.1	12
34	Laser ablation of polymer coatings allows for electromagnetic field enhancement mapping around nanostructures. Applied Physics Letters, 2011, 98, 193117.	3.3	11
35	Enhanced photoresponsivity in organic field effect transistors by silver nanoparticles. Organic Electronics, 2017, 46, 270-275.	2.6	11
36	Pinning of organic nanofiber surface growth. Nanoscale, 2010, 2, 134-138.	5.6	10

#	Article	IF	CITATIONS
37	Mapping of gold nanostructure-enhanced near fields via laser scanning second-harmonic generation and ablation. Journal of Nanophotonics, 2012, 6, 063515.	1.0	10
38	Surface-Controlled Crystal Alignment of Naphthyl End-Capped Oligothiophene on Graphene: Thin-Film Growth Studied by in Situ X-ray Diffraction. Langmuir, 2020, 36, 1898-1906.	3.5	10
39	Correlating Charge Transport with Structure in Deconstructed Diketopyrrolopyrrole Oligomers: A Case Study of a Monomer in Field-Effect Transistors. ACS Applied Materials & Interfaces, 2018, 10, 19844-19852.	8.0	9
40	Structural Evaluation of 5,5′-Bis(naphth-2-yl)-2,2′-bithiophene in Organic Field-Effect Transistors with <i>n</i> -Octadecyltrichlorosilane Coated SiO ₂ Gate Dielectric. Langmuir, 2018, 34, 6727-6736.	3.5	9
41	Micromanipulation of organic nanofibers for blue light emitting microstructures. Physica Status Solidi (A) Applications and Materials Science, 2006, 203, 1459-1463.	1.8	8
42	Versatile Method for Manipulating and Contacting Nanowires. Journal of Nanoscience and Nanotechnology, 2006, 6, 1995-1999.	0.9	8
43	Conduction and electroluminescence from organic continuous and nanofiber thin films. Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, 2763-2766.	0.8	8
44	Measurement of surface plasmon autocorrelation functions. Optics Express, 2013, 21, 27392.	3.4	8
45	Modeling temperature dependent singlet exciton dynamics in multilayered organic nanofibers. Journal of Chemical Physics, 2018, 148, 204101.	3.0	8
46	The surface microstructure controlled growth of organic nanofibres. Nanotechnology, 2009, 20, 115601.	2.6	7
47	Reduced bleaching in organic nanofibers by bilayer polymer/oxide coating. Journal of Applied Physics, 2010, 107, .	2.5	7
48	Organic Molecular Films as Light-Emitting and Light-Confining Material in Rolled-Up AlInP Semiconductor Microtube Resonators. ACS Photonics, 2015, 2, 1532-1538.	6.6	7
49	Photo-induced and electrical degradation of organic field-effect transistors. Organic Electronics, 2020, 82, 105717.	2.6	7
50	Optical properties of microstructured surface-grown and transferred organic nanofibers. Journal of Nanophotonics, 2011, 5, 051701.	1.0	6
51	Integrating nanotubes into microsystems with electron beam lithography and in situ catalytically activated growth. Physica Status Solidi (A) Applications and Materials Science, 2006, 203, 1094-1099.	1.8	5
52	Localized and guided electroluminescence from roll printed organic nanofibres. Nanotechnology, 2012, 23, 425203.	2.6	5
53	Titanium Nitride as a Strain Gauge Material. Journal of Microelectromechanical Systems, 2016, 25, 683-690.	2.5	5
54	Early-stage growth observations of orientation-controlled vacuum-deposited naphthyl end-capped oligothiophenes. Physical Review Materials, 2021, 5, .	2.4	5

JAKOB KJELSTRUP-HANSEN

#	Article	IF	CITATIONS
55	Three-point bending setup for piezoresistive gauge factor measurement of thin-film samples at high temperatures. Review of Scientific Instruments, 2017, 88, 015001.	1.3	4
56	Photo-induced degradation mechanisms in 4P-NPD thin films. Organic Electronics, 2018, 63, 114-119.	2.6	4
57	Charge Injection and Transport in Organic Nanofibers. Journal of Physics: Conference Series, 2007, 61, 565-569.	0.4	3
58	Mapping charge carrier density in organic thin-film transistors by time-resolved photoluminescence lifetime studies. Organic Electronics, 2017, 49, 69-75.	2.6	3
59	Structural basis for a naphthyl end-capped oligothiophene with embedded metallic nanoparticles for organic field-effect transistors. Applied Physics Letters, 2018, 113, .	3.3	3
60	Modeling of Grazing-Incidence X-ray Diffraction from Naphthyl End-Capped Oligothiophenes in Organic Field-Effect Transistors. Crystal Growth and Design, 2020, 20, 3968-3978.	3.0	3
61	MICROFABRICATED TOOLS FOR PICK-AND-PLACE OF NANOSCALE COMPONENTS. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2006, 39, 120-126.	0.4	2
62	Printed second harmonic active organic nanofiber arrays. Proceedings of SPIE, 2007, , .	0.8	2
63	A joint theoretical and experimental characterization of two acene-thiophene derivatives. Journal of Molecular Modeling, 2017, 23, 52.	1.8	2
64	Acquisition and Analysis of Hyperspectral Thermal Images for Sample Segregation. Applied Spectroscopy, 2021, 75, 317-324.	2.2	2
65	Work function difference of naphthyl end-capped oligothiophene in different crystal alignments studied by Kelvin probe force microscopy. Organic Electronics, 2021, 89, 106060.	2.6	2
66	Oxidation Properties of Al-Nanostructures on Si Surfaces. Physica Scripta, 2004, T114, 164-166.	2.5	1
67	Controlled growth of organic nanofibers on nano- and micro-structured gold surfaces. Proceedings of SPIE, 2009, , .	0.8	1
68	Light-emission from in-situ grown organic nanostructures. Proceedings of SPIE, 2011, , .	0.8	1
69	Application of a grating coupler for surface plasmon polariton excitation in a photoemission electron microscopy experiment. Proceedings of SPIE, 2012, , .	0.8	1
70	AC-driven light emission from in situ grown organic nanofibers. , 2012, , .		1
71	Laser-induced charge separation in organic nanofibers: A joint experimental and theoretical investigation. Organic Electronics, 2018, 53, 20-25.	2.6	1
72	Structural Effects of Electrode Proximity in Vacuumâ€Deposited Organic Semiconductors Studied by Microfocused Xâ€Ray Scattering. Advanced Engineering Materials, 0, , 2100082.	3.5	1

#	Article	IF	CITATIONS
73	Surface temperature determination using long range thermal emission spectroscopy based on a first order scanning Fabry-Pérot interferometer. Optics Express, 2022, 30, 2186-2196.	3.4	1
74	Wafer scale integration of catalyst dots into nonplanar microsystems. Journal of Micro/ Nanolithography, MEMS, and MOEMS, 2007, 6, 043014.	0.9	0
75	Charge-Transport Properties of para-Hexaphenylene Nanofibers. , 2008, , .		0
76	Electrical properties of in-situ grown and transferred organic nanofibers. Proceedings of SPIE, 2010, ,	0.8	0
77	Near-field mapping by laser ablation of PMMA coatings. Proceedings of SPIE, 2011, , .	0.8	0
78	Organic light-emitting transistors optimized by self-assembled monolayers. Proceedings of SPIE, 2012, ,	0.8	0
79	Parallel integration of aligned carbon strings in polymer composite: Dielectrophoretic preparation, finite element simulation, and electrical characterization. Polymer Composites, 2015, 36, 1866-1874.	4.6	0
80	Vacuum Pressure Leads to an Organic Molecular Electronic Response. Journal of Physical Chemistry C, 0, , .	3.1	0
81	Mapping of electromagnetic fields enhanced by gold nanostructures. SPIE Newsroom, 0, , .	0.1	0
82	Device-Oriented Studies on Electrical, Optical and Mechanical Properties of Individual Organic		0

82 Nanofibers. , 2008, , 301-324.