S Pamir Alpay

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9326503/publications.pdf

Version: 2024-02-01

71102 82547 5,790 157 41 72 citations h-index g-index papers 161 161 161 5225 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Ab Initio Study of Hydrostable Metal–Organic Frameworks for Postsynthetic Modification and Tuning toward Practical Applications. ACS Omega, 2022, 7, 7791-7805.	3.5	1
2	Matrix controlled structural phase transformations in embedded metallic nanoparticles. Scripta Materialia, 2022, 213, 114632.	5.2	1
3	Magnetically Doped Molybdenum Disulfide Layers for Enhanced Carbon Dioxide Capture. ACS Applied Materials & Dioxide Cap	8.0	11
4	Atomistic Insights into the Hydrogen Oxidation Reaction of Palladium-Ceria Bifunctional Catalysts for Anion-Exchange Membrane Fuel Cells. ACS Catalysis, 2021, 11, 2561-2571.	11.2	30
5	Surface localized magnetism in transition metal doped alumina. Scientific Reports, 2021, 11, 6410.	3.3	5
6	Thermomechanical finite element simulation and correlation analysis for orthogonal cutting of normalized AISI 9310 steels. International Journal of Advanced Manufacturing Technology, 2021, 114, 3337-3356.	3.0	4
7	Atomic configurations for materials research: A case study of some simple binary compounds. AIP Advances, 2021, 11 , .	1.3	4
8	Strain-induced surface modalities in pnictogen chalcogenide topological insulators. Journal of Applied Physics, 2021, 129, .	2.5	4
9	First principles analysis of impurities in silicon carbide grain boundaries. Acta Materialia, 2021, 221, 117421.	7.9	7
10	Surface charge mediated polar response in ferroelectric nanoparticles. Applied Physics Letters, 2021, 119, .	3.3	5
11	Point defect induced incommensurate dipole moments in the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi mathvariant="normal">K</mml:mi><mml:msub><mml:mi>Ca</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:msub></mml:msub></mml:mrow></mml:math>	nm&r 2 sub>	· <ramml:mi>Nb</ramml:mi>
12	Surface structure and energetics of low index facets of bismuth ferrite. Physical Chemistry Chemical Physics, 2020, 22, 16400-16406.	2.8	4
13	Optical response of nickel-based superalloy Inconel-718 for applications in additive manufacturing. Journal of Applied Physics, 2020, 127, .	2.5	10
14	Atomic layer adhesion of ferroelectric nanoparticles: a new approach to dielectric composites. Journal of Materials Science, 2020, 55, 16063-16073.	3.7	1
15	Electrocaloric and pyroelectric properties of barium zirconate titanate. Journal of Applied Physics, 2020, 127, .	2.5	8
16	A Portable Power Concept Based on Combustion and Pyroelectric Energy Conversion. Cell Reports Physical Science, 2020, 1, 100075.	5.6	12
17	First-principles modeling of binary layered topological insulators: Structural optimization and exchange-correlation functionals. Physical Review B, 2020, 101, .	3.2	11
18	Electronic and optical properties of zinc based hybrid organic-inorganic compounds. Materials Research Express, 2020, 7, 035701.	1.6	10

#	Article	IF	CITATIONS
19	Novel Al-X alloys with improved hardness. Materials and Design, 2020, 192, 108699.	7.0	28
20	Towards magnetic alumina: uncovering the roles of transition metal doping and electron hybridization in spin delocalization. Journal of Physics Condensed Matter, 2019, 31, 245801.	1.8	2
21	Ferroelectric films on metal substrates: The role of thermal expansion mismatch on dielectric, piezoelectric, and pyroelectric properties. Journal of Applied Physics, 2019, 126, 134103.	2.5	6
22	Electronic and Magnetic Properties of Lanthanum and Strontium Doped Bismuth Ferrite: A First-Principles Study. Scientific Reports, 2019, 9, 194.	3.3	42
23	Influence of Octahedral Cation Distribution in Montmorillonite on Interlayer Hydrogen Counter-Ion Retention Strength via First-Principles Calculations. Clays and Clay Minerals, 2019, 67, 439-448.	1.3	4
24	Polarization rotation in Bi4Ti3O12 by isovalent doping at the fluorite sublattice. Physical Review B, 2019, 99, .	3.2	16
25	Atomistic origins of Guinier-Preston zone formation and morphology in Al-Cu and Al-Ag alloys from first principles. Scripta Materialia, 2019, 162, 235-240.	5.2	13
26	Accounting for the various contributions to pyroelectricity in lead zirconate titanate thin films. Journal of Applied Physics, 2018, 123, .	2.5	18
27	Flexocaloric response of epitaxial ferroelectric films. Journal of Applied Physics, 2018, 123, .	2.5	12
28	Graphene Supported Single Atom Transition Metal Catalysts for Methane Activation. ChemCatChem, 2018, 10, 3229-3235.	3.7	39
29	Insight into point defects and impurities in titanium from first principles. Npj Computational Materials, 2018, 4, .	8.7	62
30	Combining inverse and conventional pyroelectricity in antiferroelectric thin films for energy conversion. Journal of Materials Chemistry C, 2018, 6, 9828-9834.	5.5	12
31	Electromechanical control of polarization vortex ordering in an interacting ferroelectric-dielectric composite dimer. Applied Physics Letters, 2018, 113, .	3.3	19
32	Surface phase diagrams of titanium in Oxygen, Nitrogen and Hydrogen environments: A first principles analysis. Surface Science, 2018, 677, 18-25.	1.9	20
33	Dielectric properties and resistive switching characteristics of lead zirconate titanate/hafnia heterostructures. Journal of Applied Physics, 2018, 124, .	2.5	7
34	Metastable vortex-like polarization textures in ferroelectric nanoparticles of different shapes and sizes. Journal of Applied Physics, 2018, 124, 064104.	2.5	17
35	Mesoporous cobalt/manganese oxide: a highly selective bifunctional catalyst for amine–imine transformations. Green Chemistry, 2018, 20, 3180-3185.	9.0	34
36	Topological phase transformations and intrinsic size effects in ferroelectric nanoparticles. Nanoscale, 2017, 9, 1616-1624.	5.6	49

#	Article	IF	Citations
37	Combined intrinsic elastocaloric and electrocaloric properties of ferroelectrics. Journal of Applied Physics, 2017, 121, .	2.5	20
38	Reduced Graphene Oxide Supported Nickel–Manganese–Cobalt Spinel Ternary Oxide Nanocomposites and Their Chemically Converted Sulfide Nanocomposites as Efficient Electrocatalysts for Alkaline Water Splitting. ACS Catalysis, 2017, 7, 819-832.	11.2	101
39	Soft phonon mode dynamics in Aurivillius-type structures. Physical Review B, 2017, 96, .	3.2	17
40	Mesoporous Iron Sulfide for Highly Efficient Electrocatalytic Hydrogen Evolution. Journal of the American Chemical Society, 2017, 139, 13604-13607.	13.7	288
41	Microstructural stability, defect structures and deformation mechanisms in a Ag3Sn/Cu3Sn alloy. Journal of Materials Science, 2017, 52, 2944-2956.	3.7	8
42	Mesoporous Manganese Oxide Catalyzed Aerobic Oxidative Coupling of Anilines To Aromatic Azo Compounds. Angewandte Chemie, 2016, 128, 2211-2215.	2.0	47
43	Mesoporous Manganese Oxide Catalyzed Aerobic Oxidative Coupling of Anilines To Aromatic Azo Compounds. Angewandte Chemie - International Edition, 2016, 55, 2171-2175.	13.8	102
44	Switchable and tunable film bulk acoustic resonator fabricated using barium strontium titanate active layer and Ta2O5/SiO2 acoustic reflector. Applied Physics Letters, 2016, 109, .	3.3	5
45	Perovskite ferroelectrics and relaxor-ferroelectric solid solutions with large intrinsic electrocaloric response over broad temperature ranges. Journal of Materials Chemistry C, 2016, 4, 4763-4769.	5.5	29
46	Extended Aging of Ag/W Circuit Breaker Contacts: Influence on Surface Structure, Electrical Properties, and UL Testing Performance. Journal of Materials Engineering and Performance, 2016, 25, 91-101.	2.5	2
47	Acoustic Detection: Acoustic Detection of Phase Transitions at the Nanoscale (Adv. Funct. Mater.) Tj ETQq1 1 0.7	784314 rg 14.9	BT _O Overlock
48	Amplitudon and phason modes of electrocaloric energy interconversion. Npj Computational Materials, 2016, 2, .	8.7	14
49	Acoustic Detection of Phase Transitions at the Nanoscale. Advanced Functional Materials, 2016, 26, 478-486.	14.9	28
50	Solidification microstructures in Ag3Sn–Cu3Sn pseudo-binary alloys. Journal of Materials Science, 2016, 51, 6474-6487.	3.7	10
51	Low-voltage ferroelectric–paraelectric superlattices as gate materials for field-effect transistors. Journal of Materials Science, 2016, 51, 487-498.	3.7	9
52	Are ferroelectric multilayers capacitors in series?. Journal of Materials Science, 2016, 51, 499-505.	3.7	28
53	Surface Degradation of Ag/W Circuit Breaker Contacts During Standardized UL Testing. Journal of Materials Engineering and Performance, 2015, 24, 3251-3262.	2.5	6
54	A new method for achieving enhanced dielectric response over a wide temperature range. Scientific Reports, 2015, 5, 15144.	3.3	18

#	Article	IF	Citations
55	Microstructure effects in braze joints formed between Ag/W electrical contacts and Sn-coated Cu using Cu–Ag–P filler metal. Journal of Materials Science, 2015, 50, 324-333.	3.7	10
56	Temperature dependent structural, elastic, and polar properties of ferroelectric polyvinylidene fluoride (PVDF) and trifluoroethylene (TrFE) copolymers. Journal of Materials Chemistry C, 2015, 3, 8389-8396.	5 . 5	51
57	Misfit strain phase diagrams of epitaxial PMN–PT films. Applied Physics Letters, 2015, 106, .	3.3	35
58	Pyroelectric and dielectric properties of ferroelectric films with interposed dielectric buffer layers. Applied Physics Letters, $2014,105,.$	3.3	10
59	Tailoring dielectric properties of ferroelectric-dielectric multilayers. Applied Physics Letters, 2014, 104, 022901.	3.3	18
60	Next-generation electrocaloric and pyroelectric materials for solid-state electrothermal energy interconversion. MRS Bulletin, 2014, 39, 1099-1111.	3. 5	155
61	Strain engineered barium strontium titanate for tunable thin film resonators. Applied Physics Letters, 2014, 104, .	3.3	54
62	Enhanced electrocaloric and pyroelectric response from ferroelectric multilayers. Applied Physics Letters, 2014, 105, .	3.3	40
63	Strong dependence of dielectric properties on electrical boundary conditions and interfaces in ferroelectric superlattices. Applied Physics Letters, 2014, 104, 022906.	3.3	21
64	Strain engineering of piezoelectric properties of strontium titanate thin films. Journal of Materials Science, 2014, 49, 5978-5985.	3.7	26
65	Strain induced variations in band offsets and built-in electric fields in InGaN/GaN multiple quantum wells. Journal of Applied Physics, 2013, 114, .	2.5	24
66	Effect of elastic domains on electromechanical response of epitaxial ferroelectric films with a three-domain architecture. Journal of Advanced Ceramics, 2013, 2, 1-10.	17.4	10
67	Challenges and opportunities for multi-functional oxide thin films for voltage tunable radio frequency/microwave components. Journal of Applied Physics, 2013, 114, .	2.5	137
68	Pyroelectric response of lead zirconate titanate thin films on silicon: Effect of thermal stresses. Journal of Applied Physics, 2013, 114, .	2.5	34
69	Enhanced dielectric properties from barium strontium titanate films with strontium titanate buffer layers. Journal of Applied Physics, 2013, 114, 164107.	2.5	28
70	Electrocaloric properties of epitaxial strontium titanate films. Applied Physics Letters, 2012, 100, .	3. 3	17
71	Role of heteroepitaxial misfit strains on the band offsets of Zn1â°'xBexO/ZnO quantum wells: A first-principles analysis. Journal of Applied Physics, 2012, 111, 113714.	2.5	16
72	Bulk-like dielectric properties from metallo-organic solution–deposited SrTiO3 films on Pt-coated Si substrates. Journal of Applied Physics, 2012, 111, .	2.5	19

#	Article	IF	CITATIONS
73	Polarization, piezoelectric properties, and elastic coefficients of In x Ga1â^x N solid solutions from first principles. Journal of Materials Science, 2012, 47, 7587-7593.	3.7	7
74	Discontinuous precipitation of β-Ru phase in Ni–18Ru alloys. Journal of Materials Science, 2012, 47, 5701-5705.	3.7	1
75	Effect of Asymmetrical Interface Charges on the Hysteresis and Domain Configurations of Ferroelectric Thin Films. Integrated Ferroelectrics, 2011, 126, 142-154.	0.7	5
76	Aspects of the Electrocaloric Behavior of Ferroelectric Thin Films: A Review of the Predictions of the Landau-Ginzburg Theory. Integrated Ferroelectrics, 2011, 125, 168-175.	0.7	10
77	Electrical and tribological properties of a Ni–18%Ru alloy for contact applications. Journal of Materials Science, 2011, 46, 6563-6570.	3.7	10
78	Mahjoub, Alpay, and Nagarajan Reply:. Physical Review Letters, 2011, 107, .	7.8	0
79	Theoretical analysis of the crystal structure, band-gap energy, polarization, and piezoelectric properties of ZnO-BeO solid solutions. Physical Review B, 2011, 84, .	3.2	22
80	Influence of the Precursor Solution Molarity on the Dielectric Response of Chemical Solution Deposited Strontium Titanate Thin Films on Si. Integrated Ferroelectrics, 2011, 126, 7-16.	0.7	4
81	Contribution of space charges to the polarization of ferroelectric superlattices and its effect on dielectric properties. Physical Review B, 2010, 82, .	3.2	31
82	Base metal alloys with self-healing native conductive oxides for electrical contact materials. Applied Physics Letters, 2010, 97, .	3.3	13
83	Theory of Giant Electromechanical Response from Ferroelectric Bilayers with Polydomain Structures due to Interlayer and Interdomain Coupling. Physical Review Letters, 2010, 105, 197601.	7.8	28
84	Phase coexistence near a morphotropic phase boundary in Sm-doped BiFeO3 films. Applied Physics Letters, 2010, 97, .	3.3	77
85	Phase diagrams, dielectric response, and piezoelectric properties of epitaxial ultrathin (001) lead zirconate titanate films under anisotropic misfit strains. Journal of Applied Physics, 2010, 107, .	2.5	21
86	Pyroelectric properties of barium strontium titanate films: Effect of thermal stresses. Journal of Applied Physics, 2010, 108, .	2.5	45
87	THE OPTICAL DIELECTRIC FUNCTION IN MONOLITHIC Ba x Sr1-x TiO 3 FILMS. Integrated Ferroelectrics, 2010, 111, 27-36.	0.7	0
88	DESIGN AND SIMULATION OF TUNABLE KA BAND FILTERS WITH GRADED BARIUM STRONTIUM TITANATE (BST) VARACTORS. Integrated Ferroelectrics, 2010, 111, 50-58.	0.7	0
89	Asymmetric hysteresis loops and smearing of the dielectric anomaly at the transition temperature due to space charges in ferroelectric thin films. Journal of Applied Physics, 2010, 108, .	2.5	49
90	Band gap tuning in GaN through equibiaxial in-plane strains. Applied Physics Letters, 2010, 96, .	3.3	76

#	Article	IF	CITATIONS
91	PYROELECTRIC PROPERTIES OF EPITAXIAL (001) BARIUM STRONTIUM TITANATE AS A FUNCTION OF SPACE CHARGE DENSITY. Integrated Ferroelectrics, 2010, 111, 80-87.	0.7	2
92	Domain engineering in compositionally graded ferroelectric films for enhanced dielectric response and tunability. Journal of Applied Physics, 2009, 105, .	2.5	25
93	Compositionally graded ferroelectric multilayers for frequency agile tunable devices. Journal of Materials Science, 2009, 44, 5364-5374.	3.7	26
94	Electrothermal properties of perovskite ferroelectric films. Journal of Materials Science, 2009, 44, 5263-5273.	3.7	38
95	Recent developments in ferroelectric nanostructures and multilayers. Journal of Materials Science, 2009, 44, 5021-5024.	3.7	10
96	Polarization coupling in ferroelectric multilayers. Physical Review B, 2009, 79, .	3.2	67
97	Imprint in ferroelectric materials due to space charges: A theoretical analysis. Applied Physics Letters, 2009, 95, .	3.3	44
98	Synthesis, characterization, and photocatalytic properties of ZnO/(La,Sr)CoO3 composite nanorod arrays. Journal of Materials Chemistry, 2009, 19, 970.	6.7	75
99	Dielectric properties of MgO-doped compositionally graded multilayer barium strontium titanate films. Applied Physics Letters, 2008, 92, 072906.	3.3	81
100	Resistivity of V2O3 thin films deposited on a-plane (110) and c-plane (001) sapphire by pulsed laser deposition. Applied Physics Letters, 2008, 92, .	3.3	55
101	Ferroelastic domains in bilayered ferroelectric thin films. Journal of Applied Physics, 2008, 104, .	2.5	14
102	Modeling of graded and multilayer ferroelectrics: Dielectric and piezoelectric response., 2008,,.		0
103	Electrocaloric response of the ferroelectrics. , 2008, , .		O
104	ENHANCED DIELECTRIC RESPONSE AND TEMPERATURE INSENSITIVITY OF COMPOSITIONALLY STRATIFIED BA1 â~xSRxTIO3 THIN FILMS. Integrated Ferroelectrics, 2008, 100, 48-60.	0.7	1
105	Dielectric response and tunability of a dielectric-paraelectric composite. Applied Physics Letters, 2008, 93, 102908.	3.3	66
106	Cation ordering in epitaxial lead zirconate titanate films. Applied Physics Letters, 2008, 93, 262903.	3.3	8
107	DIELECTRIC RESPONSE OF VARIABLE THICKNESS Ba _{0.6} Sr _{0.4} TiO ₃ FILMS FOR PROPERTY-SPECIFIC DEVICE APPLICATIONS. Integrated Ferroelectrics, 2008, 100, 36-47.	0.7	11
108	PHASE TRANSFORMATION CHARACTERISTICS OF BARIUM STRONTIUM TITANATE FILMS ON ANISOTROPIC SUBSTRATES WITH (001)//(001) EPITAXY. Integrated Ferroelectrics, 2008, 101, 29-36.	0.7	0

#	Article	IF	CITATIONS
109	Microwave dielectric properties of graded barium strontium titanate films. Applied Physics Letters, 2008, 92, 182906.	3.3	68
110	Influence of mechanical boundary conditions on the electrocaloric properties of ferroelectric thin films. Journal of Applied Physics, 2008, 103, .	2.5	185
111	LOW-TEMPERATURE MONOCLINIC PHASE IN EPITAXIAL (001) BARIUM TITANATE ON (001) CUBIC SUBSTRATES. Integrated Ferroelectrics, 2008, 101, 4-11.	0.7	O
112	Dielectric tunability of graded barium strontium titanate multilayers: Effect of thermal strains. Journal of Applied Physics, 2008, 104, .	2.5	41
113	Film thickness versus misfit strain phase diagrams for epitaxial <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mro< th=""><th>1>³²/mml:</th><th>:mn></th></mml:mro<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:msub></mml:mrow></mml:math>	1> ³² /mml:	:mn>
114	An enabling material design to promote highly tunable, low loss, performance consistent BST thin films for tunable device applications. , 2008 , , .		0
115	Growth of V ₂ O ₃ thin films on <i>a</i> plane (110) and <i>c</i> plane (001) sapphire via pulsed-laser deposition. Journal of Materials Research, 2007, 22, 2825-2831.	2.6	29
116	Internal magnetostatic potentials of magnetization-graded ferromagnetic materials. Applied Physics Letters, 2007, 90, 062502.	3.3	40
117	Magnitude of the intrinsic electrocaloric effect in ferroelectric perovskite thin films at high electric fields. Applied Physics Letters, 2007, 90, 252909.	3.3	194
118	Stress induced monoclinic phase in epitaxial BaTiO3 on MgO. Journal of Applied Physics, 2006, 99, 104103.	2.5	32
119	PHASE TRANSFORMATION CHARACTERISTICS OF FERROELECTRIC-PARAELECTRIC BILAYERS. Integrated Ferroelectrics, 2006, 83, 165-175.	0.7	0
120	Piezoelectric and dielectric tunabilities of ultra-thin ferroelectric heterostructures. Journal of Materials Research, 2006, 21, 1600-1606.	2.6	12
121	Defect microstructures in epitaxial PbZr0.2Ti0.8O3 films grown on (001) SrTiO3 by pulsed laser deposition. Journal of Materials Science, 2006, 41, 697-707.	3.7	34
122	Large piezoelectric strains from polarization graded ferroelectrics. Applied Physics Letters, 2006, 89, 142913.	3.3	39
123	Effect of strain on tunability in Ba0.60Sr0.40TiO3 thin films on Pt–Si substrates. Journal of Applied Physics, 2006, 99, 014108.	2.5	23
124	POLARIZATION VARIATIONS DUE TO DISLOCATION CONFIGURATIONS IN HETEROEPITAXIAL FERROELECTRIC LAYERS. Integrated Ferroelectrics, 2006, 83, 67-80.	0.7	3
125	Nucleation of stress-induced martensites in a Ti/Mo-based alloy. Journal of Materials Science, 2005, 40, 2833-2836.	3.7	53
126	STRONG DEGRADATION OF PHYSICAL PROPERTIES AND FORMATION OF A DEAD LAYER IN FERROELECTRIC FILMS DUE TO INTERFACIAL DISLOCATIONS. Integrated Ferroelectrics, 2005, 71, 67-80.	0.7	20

#	Article	IF	Citations
127	Misfit dislocations in nanoscale ferroelectric heterostructures. Applied Physics Letters, 2005, 86, 192910.	3.3	130
128	Threading dislocation generation in epitaxial (Ba,Sr) TiO3 films grown on (001) LaAlO3 by pulsed laser deposition. Applied Physics Letters, 2004, 84, 1742-1744.	3.3	35
129	Effect of operating temperature and film thickness on the pyroelectric response of ferroelectric materials. Applied Physics Letters, 2004, 84, 4959-4961.	3.3	22
130	The role of thermally-induced internal stresses on the tunability of textured barium strontium titanate films. Applied Physics Letters, 2004, 85, 985-987.	3.3	48
131	Can interface dislocations degrade ferroelectric properties?. Applied Physics Letters, 2004, 85, 2044-2046.	3.3	165
132	Structural characteristics of ferroelectric phase transformations in single-domain epitaxial films. Journal of Applied Physics, 2004, 95, 8118-8123.	2.5	79
133	Optimization of the tunability of barium strontium titanate films via epitaxial stresses. Journal of Applied Physics, 2003, 93, 504-511.	2.5	135
134	Strain relaxation during in situ growth of SrTiO3 thin films. Applied Physics Letters, 2003, 83, 4592-4594.	3.3	98
135	A Transmission Electron Microscopy Study of Dislocation Substructures in PLD-grown Epitaxial Films of (Ba,Sr)TiO3 on (001) LaAlO3. Materials Research Society Symposia Proceedings, 2003, 784, 271.	0.1	0
136	Hysteresis Offset and Dielectric Response of Compositionally Graded Ferroelectric Materials. Integrated Ferroelectrics, 2003, 58, 1281-1291.	0.7	18
137	Pyroelectric Properties of Ferroelectric Thin Films: Effect of Internal Stresses. Materials Research Society Symposia Proceedings, 2003, 784, 1091.	0.1	0
138	Stress-induced polarization-graded ferroelectrics. Applied Physics Letters, 2002, 81, 1068-1070.	3.3	44
139	Hysteresis Offset in Stress Induced Polarization-Graded Ferroelectrics. Materials Research Society Symposia Proceedings, 2002, 748, 1.	0.1	0
140	Tuning the Tunability in Epitaxial Barium Strontium Titanate Film via Internal Stresses. Materials Research Society Symposia Proceedings, 2002, 748, 1.	0.1	0
141	Thermodynamic Analysis of the Hysteresis Offsets from Polarization Graded Ferroelectric Materials. Materials Research Society Symposia Proceedings, 2002, 748, 1.	0.1	0
142	Misfit Strain Driven Phase Transformations in Epitaxial Barium Strontium Titanate Films. Materials Research Society Symposia Proceedings, 2002, 718, 1.	0.1	1
143	Phase diagrams and dielectric response of epitaxial barium strontium titanate films: A theoretical analysis. Journal of Applied Physics, 2002, 91, 9288-9296.	2.5	242
144	Dependence of dielectric properties on internal stresses in epitaxial barium strontium titanate thin films. Applied Physics Letters, 2001, 78, 2354-2356.	3.3	121

#	Article	IF	CITATIONS
145	Three-domain architecture of stress-free epitaxial ferroelectric films. Journal of Applied Physics, 2001, 89, 553-556.	2.5	85
146	Cellular Domain Architecture of Stress-free Epitaxial Ferroelectric Films. Materials Research Society Symposia Proceedings, 2000, 655, 431.	0.1	2
147	Dielectric properties in heteroepitaxial Ba0.6Sr0.4TiO3 thin films: Effect of internal stresses and dislocation-type defects. Applied Physics Letters, 2000, 77, 1695-1697.	3.3	237
148	Role of substrate on the dielectric and piezoelectric behavior of epitaxial lead magnesium niobate-lead titanate relaxor thin films. Applied Physics Letters, 2000, 77, 438-440.	3.3	103
149	Thickness dependence of structural and electrical properties in epitaxial lead zirconate titanate films. Journal of Applied Physics, 1999, 86, 595-602.	2.5	144
150	Effect of the electrode layer on the polydomain structure of epitaxial PbZr0.2Ti0.8O3 thin films. Journal of Applied Physics, 1999, 85, 3271-3277.	2.5	86
151	Effect of mechanical constraint on the dielectric and piezoelectric behavior of epitaxial Pb(Mg1/3Nb2/3)O3(90%)–PbTiO3(10%) relaxor thin films. Applied Physics Letters, 1999, 75, 4183-4185.	3.3	96
152	Effect of uniaxial stress fields on the domain selection of epitaxial ferroelectric films. Ferroelectrics, 1999, 221, 245-250.	0.6	3
153	Epitaxial PMN-PT Relaxor Thin Films: Dependence of Dielectric and Piezoelectric Properties on Film Thickness. Materials Research Society Symposia Proceedings, 1999, 596, 505.	0.1	0
154	Thermodynamics of polydomain heterostructures. III. Domain stability map. Journal of Applied Physics, 1998, 83, 4714-4723.	2.5	165
155	The Stress State and Domain Structure of Epitaxial PbZr0.2Ti0.8O3 Films on (001) SrTiO3 with and without La0.5Sr0.5CoO3 Electrode Layer. Materials Research Society Symposia Proceedings, 1998, 541, 357.	0.1	0
156	Equilibrium Domain Structures of Epitaxial Perovskite Ferroelectric Films. Materials Research Society Symposia Proceedings, 1997, 474, 407.	0.1	5
157	Polydomain Structure of Epitaxial PbTiO ₃ films on MgO. Materials Research Society Symposia Proceedings, 1997, 493, 111.	0.1	2