
Ning Kang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9325856/publications.pdf Version: 2024-02-01

NING KANG

#	Article	IF	CITATIONS
1	Magnetic Doping Induced Superconductivity-to-Incommensurate Density Waves Transition in a 2D Ultrathin Cr-Doped Mo ₂ C Crystal. ACS Nano, 2021, 15, 14938-14946.	14.6	7
2	Superhigh Uniform Magnetic Cr Substitution in a 2D Mo 2 C Superconductor for a Macroscopicâ€6cale Kondo Effect. Advanced Materials, 2020, 32, 2002825.	21.0	7
3	Realization and transport investigation of a single layer-twisted bilayer graphene junction. Carbon, 2020, 163, 105-112.	10.3	4
4	Transport through a network of two-dimensional NbC superconducting crystals connected via weak links. Physical Review B, 2020, 101, .	3.2	2
5	Transport signatures of relativistic quantum scars in a graphene cavity. Physical Review B, 2020, 101, .	3.2	3
6	Nitrogen cluster doping for high-mobility/conductivity graphene films with millimeter-sized domains. Science Advances, 2019, 5, eaaw8337.	10.3	77
7	Ultrafast growth of nanocrystalline graphene films by quenching and grain-size-dependent strength and bandgap opening. Nature Communications, 2019, 10, 4854.	12.8	43
8	A Forceâ€Engineered Lint Roller for Superclean Graphene. Advanced Materials, 2019, 31, e1902978.	21.0	40
9	Coexistence of induced superconductivity and quantum Hall states in InSb nanosheets. Physical Review B, 2019, 99, .	3.2	18
10	Towards super-clean graphene. Nature Communications, 2019, 10, 1912.	12.8	133
11	Copper-Containing Carbon Feedstock for Growing Superclean Graphene. Journal of the American Chemical Society, 2019, 141, 7670-7674.	13.7	47
12	Effects of domain structures on vortex state of two-dimensional superconducting Mo ₂ C crystals. 2D Materials, 2019, 6, 021005.	4.4	8
13	Transport Properties of Topological Semimetal Tungsten Carbide in the 2D Limit. Advanced Electronic Materials, 2019, 5, 1800839.	5.1	5
14	Crossover from Coulomb blockade to ballistic transport in InAs nanowire devices. Nanotechnology, 2019, 30, 124001.	2.6	4
15	Two-Dimensional Quantum Transport in Free-Standing InSb Nanosheets. Nano Letters, 2019, 19, 561-569.	9.1	24
16	Supercurrent and Multiple Andreev Reflections in InSb Nanosheet SNS Junctions. Physica Status Solidi (B): Basic Research, 2019, 256, 1800538.	1.5	13
17	Grain Boundaries and Tilt-Angle-Dependent Transport Properties of a 2D Mo ₂ C Superconductor. Nano Letters, 2019, 19, 857-865.	9.1	18
18	Charge transport and electron-hole asymmetry in low-mobility graphene/hexagonal boron nitride heterostructures. Journal of Applied Physics, 2018, 123, .	2.5	3

Ning Kang

#	Article	IF	CITATIONS
19	Low-field magnetotransport in graphene cavity devices. Nanotechnology, 2018, 29, 205707.	2.6	1
20	Lowâ€Temperature and Rapid Growth of Large Singleâ€Crystalline Graphene with Ethane. Small, 2018, 14, 1702916.	10.0	39
21	Signature of quantum Griffiths singularity state in a layered quasi-one-dimensional superconductor. Nature Communications, 2018, 9, 4656.	12.8	21
22	Electron–Hole Symmetry Breaking in Charge Transport in Nitrogen-Doped Graphene. ACS Nano, 2017, 11, 4641-4650.	14.6	46
23	Strongly Coupled High-Quality Graphene/2D Superconducting Mo ₂ C Vertical Heterostructures with Aligned Orientation. ACS Nano, 2017, 11, 5906-5914.	14.6	110
24	<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mn>0</mml:mn><mml:mtext>â^`</mml:mtext><m phase transition in hybrid superconductor–InSb nanowire quantum dot devices. Physical Review B, 2017, 95, .</m </mml:math 	ml;mi>ï€<	/mʒʒ]:mi>
25	Magnetotransport in Ultrathin 2-D Superconducting Mo2C Crystals. IEEE Transactions on Magnetics, 2017, 53, 1-4.	2.1	9
26	Wrinkle-Free Single-Crystal Graphene Wafer Grown on Strain-Engineered Substrates. ACS Nano, 2017, 11, 12337-12345.	14.6	172
27	Magnetotransport Properties in High-Quality Ultrathin Two-Dimensional Superconducting Mo ₂ C Crystals. ACS Nano, 2016, 10, 4504-4510.	14.6	69
28	Surface Monocrystallization of Copper Foil for Fast Growth of Large Single rystal Graphene under Free Molecular Flow. Advanced Materials, 2016, 28, 8968-8974.	21.0	128
29	Coherent Charge Transport in Ballistic InSb Nanowire Josephson Junctions. Scientific Reports, 2016, 6, 24822.	3.3	26
30	Unique Domain Structure of Two-Dimensional α-Mo ₂ C Superconducting Crystals. Nano Letters, 2016, 16, 4243-4250.	9.1	101
31	Free-Standing Two-Dimensional Single-Crystalline InSb Nanosheets. Nano Letters, 2016, 16, 834-841.	9.1	72
32	Surface Engineering of Copper Foils for Growing Centimeter-Sized Single-Crystalline Graphene. ACS Nano, 2016, 10, 2922-2929.	14.6	89
33	Phase-coherent transport and spin relaxation in InAs nanowires grown by molecule beam epitaxy. Applied Physics Letters, 2015, 106, .	3.3	21
34	Formation of long single quantum dots in high quality InSb nanowires grown by molecular beam epitaxy. Nanoscale, 2015, 7, 14822-14828.	5.6	23
35	Large-area high-quality 2D ultrathin Mo2C superconducting crystals. Nature Materials, 2015, 14, 1135-1141.	27.5	1,045
36	One-dimensional electronic transport at the organic charge-transfer interfaces under high pressures. Applied Physics Letters, 2014, 104, 193302.	3.3	1

Ning Kang

#	Article	IF	CITATIONS
37	Photoelectrical response of hybrid graphene-PbS quantum dot devices. Applied Physics Letters, 2013, 103, .	3.3	56
38	Resonant Scattering in Proximity oupled Graphene/Superconducting Mo ₂ C Heterostructures. Advanced Science, 0, , 2201343.	11.2	1