
Rosario Solera del RÃ-o

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9324714/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Anaerobic digestion of slaughterhouse waste in batch and anaerobic sequential batch reactors. Biomass Conversion and Biorefinery, 2023, 13, 11457-11468.	4.6	6
2	Determination of Anaerobic Co-fermentation of Brewery Wastewater and Brewer's Spent Grains for Bio-hydrogen Production. Bioenergy Research, 2023, 16, 1073-1083.	3.9	8
3	Anaerobic co-digestion of sewage sludge, wine vinasse and poultry manure for bio-hydrogen production. International Journal of Hydrogen Energy, 2022, 47, 3667-3678.	7.1	36
4	Biochemical assays of potential methane to test biogas production from dark fermentation of sewage sludge and agricultural residues. International Journal of Hydrogen Energy, 2022, 47, 13289-13299.	7.1	18
5	Improvement of the anaerobic digestion of sewage sludge by co-digestion with wine vinasse and poultry manure: Effect of different hydraulic retention times. Fuel, 2022, 321, 124104.	6.4	20
6	Anaerobic sequential batch reactor for CO-DIGESTION of slaughterhouse residues: Wastewater and activated sludge. Energy, 2022, 255, 124575.	8.8	3
7	A bibliometric analysis of the hydrogen production from dark fermentation. International Journal of Hydrogen Energy, 2022, 47, 27397-27420.	7.1	40
8	Effect of hydraulic retention time on hydrogen production from sewage sludge and wine vinasse in a thermophilic acidogenic CSTR: A promising approach for hydrogen production within the biorefinery concept. International Journal of Hydrogen Energy, 2021, 46, 7810-7820.	7.1	19
9	Benefits in the valorization of sewage sludge and wine vinasse via a two-stage acidogenic-thermophilic and methanogenic-mesophilic system based on the circular economy concept. Fuel, 2021, 296, 120654.	6.4	25
10	Effect of hydraulic retention time on the methanogenic step of a two-stage anaerobic digestion system from sewage sludge and wine vinasse: Microbial and kinetic evaluation. Fuel, 2021, 296, 120674.	6.4	17
11	Improvement of biomethane potential of sewage sludge anaerobic co-digestion by addition of "sherry-wine―distillery wastewater. Journal of Cleaner Production, 2020, 251, 119667.	9.3	39
12	An eco-friendly way to valorize winery wastewater and sewage sludge: Anaerobic co-digestion. Biomass and Bioenergy, 2020, 142, 105779.	5.7	10
13	Evaluating the Effectiveness of Adding Chicken Manure in the Anaerobic Mesophilic Codigestion of Sewage Sludge and Wine Distillery Wastewater: Kinetic Modeling and Economic Approach. Energy & Fuels, 2020, 34, 12626-12633.	5.1	4
14	Eco-energetic management of activated sludge derived from slaughterhouse wastewater treatment: pre-treatments for enhancing biogas production under anaerobic conditions. Sustainable Energy and Fuels, 2020, 4, 5072-5079.	4.9	8
15	Modelling of the anaerobic semi-continuous co-digestion of sewage sludge and wine distillery wastewater. Environmental Science: Water Research and Technology, 2020, 6, 1880-1889.	2.4	10
16	Adaptation of thermophilic sludge-inoculum to co-digestion with Sherry-wine distillery wastewater. Biomass and Bioenergy, 2020, 139, 105628.	5.7	9
17	First approaches to valorizate fat, oil and grease (FOG) as anaerobic co-substrate with slaughterhouse wastewater: Biomethane potential, settling capacity and microbial dynamics Chemosphere, 2020, 259, 127474.	8.2	15
18	Enhanced hydrogen production from sewage sludge by cofermentation with wine vinasse. International Journal of Hydrogen Energy, 2020, 45, 15977-15984.	7.1	49

Rosario Solera del RÃo

#	Article	IF	CITATIONS
19	Biomethane production improvement by enzymatic pre-treatments and enhancers of sewage sludge anaerobic digestion. Fuel, 2019, 255, 115713.	6.4	50
20	Effects of several inocula on the biochemical hydrogen potential of sludge-vinasse co-digestion. Fuel, 2019, 258, 116180.	6.4	23
21	Assessment of Chemical Inhibitor Addition to Improve the Gas Production from Biowaste. Waste and Biomass Valorization, 2019, 10, 1091-1099.	3.4	6
22	Mesophilic anaerobic co-digestion of sewage sludge with glycerine: Effect of solids retention time. Fuel, 2018, 215, 285-289.	6.4	39
23	Seeking to enhance the bioenergy of municipal sludge: Effect of alkali pre-treatment and soluble organic matter supplementation. Waste Management, 2017, 68, 398-404.	7.4	13
24	Effect of thermal pretreatment on the biogas production and microbial communities balance during anaerobic digestion of urban and industrial waste activated sludge. Bioresource Technology, 2016, 214, 184-191.	9.6	132
25	Thermophilic and mesophilic temperature phase anaerobic co-digestion (TPAcD) compared with single-stage co-digestion of sewage sludge and sugar beet pulp lixiviation. Biomass and Bioenergy, 2016, 93, 107-115.	5.7	48
26	Anaerobic co-digestion of sewage sludge and sugar beet pulp lixiviation in batch reactors: Effect of temperature. Bioresource Technology, 2015, 180, 177-184.	9.6	40
27	Biomethanization from sulfate ontaining municipal solid waste: effect of molybdate on microbial consortium. Journal of Chemical Technology and Biotechnology, 2014, 89, 1379-1387.	3.2	9
28	Anaerobic mesophilic co-digestion of sewage sludge and sugar beet pulp lixiviation in batch reactors: Effect of pH control. Chemical Engineering Journal, 2014, 255, 492-499.	12.7	65
29	Performance of up-flow anaerobic fixed bed reactor of the treatment of sugar beet pulp lixiviation in a thermophilic range. Bioresource Technology, 2014, 154, 305-312.	9.6	7
30	Mesophilic anaerobic co-digestion of sewage sludge and a lixiviation of sugar beet pulp: Optimisation of the semi-continuous process. Bioresource Technology, 2013, 142, 655-662.	9.6	26
31	Agreement between Theory and Measurement in Quantification of Ammonia-Oxidizing Bacteria. Applied and Environmental Microbiology, 2005, 71, 6325-6334.	3.1	73