Raimundo Freire

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9323498/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multiple 9-1-1 complexes promote homolog synapsis, DSB repair, and ATR signaling during mammalian meiosis. ELife, 2022, 11, .	6.0	7
2	The CDK1-TOPBP1-PLK1 axis regulates the Bloom's syndrome helicase BLM to suppress crossover recombination in somatic cells. Science Advances, 2022, 8, eabk0221.	10.3	13
3	Phosphoproteomics of ATR signaling in mouse testes. ELife, 2022, 11, .	6.0	12
4	Preclinical Establishment of a Divalent Vaccine against SARS-CoV-2. Vaccines, 2022, 10, 516.	4.4	2
5	Vaccination with BNT162b2 and ChAdOx1 nCoV-19 Induces Cross-Reactive Anti-RBD IgG against SARS-CoV-2 Variants including Omicron. Viruses, 2022, 14, 1181.	3.3	4
6	The Nucleocapsid protein triggers the main humoral immune response in COVID-19 patients. Biochemical and Biophysical Research Communications, 2021, 543, 45-49.	2.1	68
7	Ubiquitinâ€specific protease 7 as a potential therapeutic target in dogs with hematopoietic malignancies. Journal of Veterinary Internal Medicine, 2021, 35, 1041-1051.	1.6	4
8	Antibody Response against the SARS-CoV-2 Nucleocapsid Protein and Its Subdomains—Identification of Pre-Immunization Status by Human Coronaviruses with Multipanel Nucleocapsid Fragment Immunoblotting. Covid, 2021, 1, 105-114.	1.5	6
9	Vps13 is required for timely removal of nurse cell corpses. Development (Cambridge), 2020, 147, .	2.5	6
10	Intrinsic ATR signaling shapes DNA end resection and suppresses toxic DNA-PKcs signaling. NAR Cancer, 2020, 2, zcaa006.	3.1	10
11	Implications of CLSPN Variants in Cellular Function and Susceptibility to Cancer. Cancers, 2020, 12, 2396.	3.7	4
12	TEX264 coordinates p97- and SPRTN-mediated resolution of topoisomerase 1-DNA adducts. Nature Communications, 2020, 11, 1274.	12.8	64
13	PHF2 regulates homology-directed DNA repair by controlling the resection of DNA double strand breaks. Nucleic Acids Research, 2020, 48, 4915-4927.	14.5	19
14	OZF is a Claspinâ€interacting protein essential to maintain the replication fork progression rate under replication stress. FASEB Journal, 2020, 34, 6907-6919.	0.5	5
15	PHF6 promotes nonâ€homologous end joining and G2 checkpoint recovery. EMBO Reports, 2020, 21, e48460.	4.5	22
16	Claspin – checkpoint adaptor and <scp>DNA</scp> replication factor. FEBS Journal, 2019, 286, 441-455.	4.7	65
17	GSK3-β Stimulates Claspin Degradation via β-TrCP Ubiquitin Ligase and Alters Cancer Cell Survival. Cancers, 2019, 11, 1073.	3.7	3
18	The p97–Ataxin 3 complex regulates homeostasis of the <scp>DNA</scp> damage response E3 ubiquitin ligase <scp>RNF</scp> 8. EMBO Journal, 2019, 38, e102361.	7.8	38

#	Article	IF	CITATIONS
19	Characterization of Pch2 localization determinants reveals a nucleolar-independent role in the meiotic recombination checkpoint. Chromosoma, 2019, 128, 297-316.	2.2	19
20	Chk1 KA1 domain auto-phosphorylation stimulates biological activity and is linked to rapid proteasomal degradation. Scientific Reports, 2018, 8, 17536.	3.3	6
21	Control of DNA Replication Initiation by Ubiquitin. Cells, 2018, 7, 146.	4.1	12
22	A limited number of double-strand DNA breaks is sufficient to delay cell cycle progression. Nucleic Acids Research, 2018, 46, 10132-10144.	14.5	67
23	ATR-mediated proteome remodeling is a major determinant of homologous recombination capacity in cancer cells. Nucleic Acids Research, 2018, 46, 8311-8325.	14.5	45
24	Cep55 overexpression causes maleâ€specific sterility in mice by suppressing Foxo1 nuclear retention through sustained activation of PI3K/Akt signaling. FASEB Journal, 2018, 32, 4984-4999.	0.5	43
25	Histone Ubiquitination by the DNA Damage Response Is Required for Efficient DNA Replication in Unperturbed S Phase. Molecular Cell, 2018, 71, 897-910.e8.	9.7	78
26	PERK inhibits DNA replication during the Unfolded Protein Response via Claspin and Chk1. Oncogene, 2017, 36, 678-686.	5.9	40
27	TOPBP1Dpb11 plays a conserved role in homologous recombination DNA repair through the coordinated recruitment of 53BP1Rad9. Journal of Cell Biology, 2017, 216, 623-639.	5.2	50
28	DUB3 and USP7 de-ubiquitinating enzymes control replication inhibitor Geminin: molecular characterization and associations with breast cancer. Oncogene, 2017, 36, 4802-4809.	5.9	40
29	Enhanced green fluorescent protein in optofluidic Fabry-Perot microcavity to detect laser induced temperature changes in a bacterial culture. Applied Physics Letters, 2017, 111, .	3.3	4
30	Drosophila Vps13 Is Required for Protein Homeostasis in the Brain. PLoS ONE, 2017, 12, e0170106.	2.5	28
31	SUMO regulates p21Cip1 intracellular distribution and with p21Cip1 facilitates multiprotein complex formation in the nucleolus upon DNA damage. PLoS ONE, 2017, 12, e0178925.	2.5	7
32	USP7/HAUSP: A SUMO deubiquitinase at the heart of DNA replication. BioEssays, 2016, 38, 863-868.	2.5	14
33	<scp>HUWE</scp> 1 interacts with <scp>PCNA</scp> to alleviate replication stress. EMBO Reports, 2016, 17, 874-886.	4.5	52
34	Cullin3-KLHL15 ubiquitin ligase mediates CtIP protein turnover to fine-tune DNA-end resection. Nature Communications, 2016, 7, 12628.	12.8	56
35	Metalloprotease SPRTN/DVC1 Orchestrates Replication-Coupled DNA-Protein Crosslink Repair. Molecular Cell, 2016, 64, 704-719.	9.7	193
36	USP37 deubiquitinates Cdt1 and contributes to regulate DNA replication. Molecular Oncology, 2016, 10, 1196-1206.	4.6	27

#	Article	IF	CITATIONS
37	New origin firing is inhibited by APC/C ^{Cdh1} activation in S-phase after severe replication stress. Nucleic Acids Research, 2016, 44, 4745-4762.	14.5	15
38	OTUB1 inhibits the ubiquitination and degradation of FOXM1 in breast cancer and epirubicin resistance. Oncogene, 2016, 35, 1433-1444.	5.9	108
39	KA1-targeted regulatory domain mutations activate Chk1 in the absence of DNA damage. Scientific Reports, 2015, 5, 10856.	3.3	11
40	USP29 controls the stability of checkpoint adaptor Claspin by deubiquitination. Oncogene, 2015, 34, 1058-1063.	5.9	66
41	<i>Dgcr8</i> and <i>Dicer</i> are essential for sex chromosome integrity during meiosis in males. Journal of Cell Science, 2015, 128, 2314-2327.	2.0	47
42	Bora and Aurora-A continue to activate Plk1 in mitosis. Journal of Cell Science, 2014, 127, 801-11.	2.0	86
43	FOXM1 targets NBS1 to regulate DNA damage-induced senescence and epirubicin resistance. Oncogene, 2014, 33, 4144-4155.	5.9	109
44	Phosphorylation-mediated stabilization of Bora in mitosis coordinates Plx1/Plk1 and Cdk1 oscillations. Cell Cycle, 2014, 13, 1727-1736.	2.6	14
45	Mutations in SPRTN cause early onset hepatocellular carcinoma, genomic instability and progeroid features. Nature Genetics, 2014, 46, 1239-1244.	21.4	165
46	DNA damage-specific deubiquitination regulates Rad18 functions to suppress mutagenesis. Journal of Cell Biology, 2014, 206, 183-197.	5.2	28
47	Dub3 controls DNA damage signalling by direct deubiquitination of H2AX. Molecular Oncology, 2014, 8, 884-893.	4.6	39
48	The Forkhead Box M1 protein regulates BRIP1 expression and DNA damage repair in epirubicin treatment. Oncogene, 2013, 32, 4634-4645.	5.9	83
49	Dot1-Dependent Histone H3K79 Methylation Promotes Activation of the Mek1 Meiotic Checkpoint Effector Kinase by Regulating the Hop1 Adaptor. PLoS Genetics, 2013, 9, e1003262.	3.5	67
50	Conditional Inactivation of the DNA Damage Response Gene Hus1 in Mouse Testis Reveals Separable Roles for Components of the RAD9-RAD1-HUS1 Complex in Meiotic Chromosome Maintenance. PLoS Genetics, 2013, 9, e1003320.	3.5	48
51	Wip1 regulation: Who controls a reset button?. Cell Cycle, 2013, 12, 390-390.	2.6	0
52	Opposing roles for 53BP1 during homologous recombination. Nucleic Acids Research, 2013, 41, 9719-9731.	14.5	74
53	Co-operation of BRCA1 and POH1 relieves the barriers posed by 53BP1 and RAP80 to resection. Nucleic Acids Research, 2013, 41, 10298-10311.	14.5	99
54	LIF Insensitivity and Expression of Proteins Activated by DNA Damage Response in Teratoma-Isolated Cells Derived from Mouse Embryonic Stem Cells. Cytologia, 2013, 78, 195-202.	0.6	0

#	Article	IF	CITATIONS
55	Rad9B responds to nucleolar stress through ATR and JNK signalling, and delays the G1–S transition. Journal of Cell Science, 2012, 125, 1152-1164.	2.0	29
56	The Hus1 homologue of Leishmania major encodes a nuclear protein that participates in DNA damage response. Molecular and Biochemical Parasitology, 2011, 177, 65-69.	1.1	14
57	A modular approach to trim cellular targets in anticancer drug discovery. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 6641-6645.	2.2	6
58	Novel insights into maintaining genomic integrity: Wee1 regulating Mus81/Eme1. Cell Division, 2011, 6, 21.	2.4	15
59	Wee1 controls genomic stability during replication by regulating the Mus81-Eme1 endonuclease. Journal of Cell Biology, 2011, 194, 567-579.	5.2	159
60	The Ddc2/ATRIP checkpoint protein monitors meiotic recombination intermediates. Journal of Cell Science, 2011, 124, 2488-2500.	2.0	41
61	Mammalian BTBD12 (SLX4) Protects against Genomic Instability during Mammalian Spermatogenesis. PLoS Genetics, 2011, 7, e1002094.	3.5	65
62	Mechanisms of ATR-mediated checkpoint signalling. Frontiers in Bioscience - Landmark, 2010, 15, 840.	3.0	40
63	HCLK2 Is Required for Activity of the DNA Damage Response Kinase ATR. Journal of Biological Chemistry, 2009, 284, 4140-4147.	3.4	42
64	Cell cycle-dependent processing of DNA lesions controls localization of Rad9 to sites of genotoxic stress. Cell Cycle, 2009, 8, 1765-1774.	2.6	26
65	Simian Virus 40 Large T Antigen Disrupts Genome Integrity and Activates a DNA Damage Response via Bub1 Binding. Journal of Virology, 2009, 83, 117-127.	3.4	114
66	Polo-like kinase-1 is activated by aurora A to promote checkpoint recovery. Nature, 2008, 455, 119-123.	27.8	596
67	Expression of DNA Damage Checkpoint Protein Hus1 in Epithelial Ovarian Tumors Correlates With Prognostic Markers. International Journal of Gynecological Pathology, 2008, 27, 24-32.	1.4	14
68	Cleavage and degradation of Claspin during apoptosis by caspases and the proteasome. Cell Death and Differentiation, 2007, 14, 1433-1442.	11.2	37
69	The DNA damage checkpoint is activated during residual tumour cell survival to methotrexate treatment as an initial step of acquired drug resistance. Anti-Cancer Drugs, 2006, 17, 1171-1177.	1.4	7
70	Telomere and Telomerase Modulation by the Mammalian Rad9/Rad1/Hus1 DNA-Damage-Checkpoint Complex. Current Biology, 2006, 16, 1551-1558.	3.9	50
71	Polo-like Kinase-1 Controls Proteasome-Dependent Degradation of Claspin during Checkpoint Recovery. Current Biology, 2006, 16, 1950-1955.	3.9	205
72	Claspin: Timing the Cell Cycle Arrest When the Genome is Damaged. Cell Cycle, 2006, 5, 2831-2834.	2.6	39

5

#	Article	IF	CITATIONS
73	Human spindle checkpoint kinase Bub1 is cleaved during apoptosis. Cell Death and Differentiation, 2005, 12, 827-830.	11.2	15
74	The human Rothmund-Thomson syndrome gene product, RECQL4, localizes to distinct nuclear foci that coincide with proteins involved in the maintenance of genome stability. Journal of Cell Science, 2005, 118, 4261-4269.	2.0	120
75	The human Rad9/Rad1/Hus1 damage sensor clamp interacts with DNA polymerase and increases its DNA substrate utilisation efficiency: implications for DNA repair. Nucleic Acids Research, 2004, 32, 3316-3324.	14.5	108
76	Simian virus 40 large T antigen targets the spindle assembly checkpoint protein Bub1. Proceedings of the United States of America, 2004, 101, 947-952.	7.1	102
77	TopBP1 and ATR Colocalization at Meiotic Chromosomes: Role of TopBP1/Cut5 in the Meiotic Recombination Checkpoint. Molecular Biology of the Cell, 2004, 15, 1568-1579.	2.1	79
78	TopBP1 localises to centrosomes in mitosis and to chromosome cores in meiosis. Chromosoma, 2004, 112, 323-330.	2.2	38
79	The association of ATR protein with mouse meiotic chromosome cores. Chromosoma, 1999, 108, 95-102.	2.2	89
80	Human and mouse homologs of <i>Schizosaccharomyces pombe rad1</i> ⁺ and <i>Saccharomyces cerevisiae RAD17:</i> linkage to checkpoint control and mammalian meiosis. Genes and Development, 1998, 12, 2560-2573.	5.9	100
81	Activation of Replication Origins in ϕ29-related Phages Requires the Recognition of Initiation Proteins to Specific Nucleoprotein Complexes. Journal of Biological Chemistry, 1996, 271, 31000-31007.	3.4	28
82	Protein—nucleic acid interactions in bacteriophageφ29 DNA replication. FEMS Microbiology Reviews, 1995, 17, 73-82.	8.6	11
83	DNA structure in the nucleoprotein complex that activates replication of phage Ã~/29. Biophysical Chemistry, 1994, 50, 183-189.	2.8	4
84	Phage Ã~29 protein p6: A viral histone-like protein. Biochimie, 1994, 76, 981-991.	2.6	29