
Paul Dent

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/932290/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A novel plant-derived compound is synergistic with 5-fluorouracil and has increased apoptotic activity through autophagy in the treatment of actinic keratoses. Journal of Dermatological Treatment, 2022, 33, 590-591.	2.2	11
2	Neratinib kills Bâ€RAF V600E melanoma via ROSâ€dependent autophagosome formation and death receptor signaling. Pigment Cell and Melanoma Research, 2022, 35, 66-77.	3.3	3
3	GZ17-6.02 and palbociclib interact to kill ER+ breast cancer cells. Oncotarget, 2022, 13, 92-104.	1.8	9
4	GZ17-6.02 and axitinib interact to kill renal carcinoma cells. Oncotarget, 2022, 13, 281-290.	1.8	4
5	Mechanisms of GZ17-6.02 resistance. Anti-Cancer Drugs, 2022, 33, 415-423.	1.4	2
6	Cell Signaling and Translational Developmental Therapeutics. , 2021, , .		0
7	Chemotherapy resistance and YY1. , 2021, , 243-249.		0
8	GZ17-6.02 Interacts With [MEK1/2 and B-RAF Inhibitors] to Kill Melanoma Cells. Frontiers in Oncology, 2021, 11, 656453.	2.8	10
9	Inhibition of heat shock proteins increases autophagosome formation, and reduces the expression of APP, Tau, SOD1 G93A and TDP-43. Aging, 2021, 13, 17097-17117.	3.1	9
10	GZ17-6.02 and Pemetrexed Interact to Kill Osimertinib-Resistant NSCLC Cells That Express Mutant ERBB1 Proteins. Frontiers in Oncology, 2021, 11, 711043.	2.8	10
11	Osimertinib-resistant NSCLC cells activate ERBB2 and YAP/TAZ and are killed by neratinib. Biochemical Pharmacology, 2021, 190, 114642.	4.4	12
12	The development of multi-kinase inhibitors as pancreatic cancer therapeutics. Anti-Cancer Drugs, 2021, 32, 779-785.	1.4	2
13	Axitinib and HDAC Inhibitors Interact to Kill Sarcoma Cells. Frontiers in Oncology, 2021, 11, 723966.	2.8	2
14	OBSOLETE: Cell Signaling and Translational Developmental Therapeutics. , 2021, , .		0
15	The role of cell signaling in the crosstalk between autophagy and apoptosis in the regulation of tumor cell survival in response to sorafenib and neratinib. Seminars in Cancer Biology, 2020, 66, 129-139.	9.6	46
16	Neratinib degrades MST4 via autophagy that reduces membrane stiffness and is essential for the inactivation of PI3K, ERK1/2, and YAP/TAZ signaling. Journal of Cellular Physiology, 2020, 235, 7889-7899.	4.1	27
17	AR12 (OSU-03012) suppresses GRP78 expression and inhibits SARS-CoV-2 replication. Biochemical Pharmacology, 2020, 182, 114227.	4.4	39
18	GZ17-6.02 and Doxorubicin Interact to Kill Sarcoma Cells via Autophagy and Death Receptor Signaling. Frontiers in Oncology, 2020, 10, 1331.	2.8	10

#	Article	IF	CITATIONS
19	Neratinib decreases pro-survival responses of [sorafenibÂ+Âvorinostat] in pancreatic cancer. Biochemical Pharmacology, 2020, 178, 114067.	4.4	17
20	Enhanced signaling via ERBB3/PI3K plays a compensatory survival role in pancreatic tumor cells exposed to [neratinib + valproate]. Cellular Signalling, 2020, 68, 109525.	3.6	6
21	The multi-kinase inhibitor lenvatinib interacts with the HDAC inhibitor entinostat to kill liver cancer cells. Cellular Signalling, 2020, 70, 109573.	3.6	15
22	Fingolimod Augments Monomethylfumarate Killing of GBM Cells. Frontiers in Oncology, 2020, 10, 22.	2.8	7
23	GZ17â€6.02 initiates DNA damage causing autophagosomeâ€dependent HDAC degradation resulting in enhanced antiâ€PD1 checkpoint inhibitory antibody efficacy. Journal of Cellular Physiology, 2020, 235, 8098-8113.	4.1	23
24	(Curcumin+sildenafil) enhances the efficacy of 5FU and antiâ€₽D1 therapies in vivo. Journal of Cellular Physiology, 2020, 235, 6862-6874.	4.1	29
25	Metabolism of Histone Deacetylase Proteins Opsonizes Tumor Cells to Checkpoint Inhibitory Immunotherapies. Immunometabolism, 2020, 2, .	1.6	5
26	Prior exposure of pancreatic tumors to [sorafenib + vorinostat] enhances the efficacy of an anti-PD-1 antibody. Cancer Biology and Therapy, 2019, 20, 109-121.	3.4	19
27	The Lethality of [Pazopanib + HDAC Inhibitors] Is Enhanced by Neratinib. Frontiers in Oncology, 2019, 9, 650.	2.8	10
28	Neratinib inhibits Hippo/YAP signaling, reduces mutant K-RAS expression, and kills pancreatic and blood cancer cells. Oncogene, 2019, 38, 5890-5904.	5.9	63
29	Not the comfy chair! Cancer drugs that act against multiple active sites. Expert Opinion on Therapeutic Targets, 2019, 23, 893-901.	3.4	15
30	Signaling alterations caused by drugs and autophagy. Cellular Signalling, 2019, 64, 109416.	3.6	20
31	Phase I Study of Sorafenib and Vorinostat in Advanced Hepatocellular Carcinoma. American Journal of Clinical Oncology: Cancer Clinical Trials, 2019, 42, 649-654.	1.3	21
32	Investigational CHK1 inhibitors in early phase clinical trials for the treatment of cancer. Expert Opinion on Investigational Drugs, 2019, 28, 1095-1100.	4.1	38
33	Neratinib augments the lethality of [regorafenib + sildenafil]. Journal of Cellular Physiology, 2019, 234, 4874-4887.	4.1	32
34	Palbociclib augments Neratinib killing of tumor cells that is further enhanced by HDAC inhibition. Cancer Biology and Therapy, 2019, 20, 157-168.	3.4	9
35	Neratinib and entinostat combine to rapidly reduce the expression of K-RAS, N-RAS, Gα _q and Gα ₁₁ and kill uveal melanoma cells. Cancer Biology and Therapy, 2019, 20, 700-710.	3.4	37
36	Fingolimod augments Pemetrexed killing of non-small cell lung cancer and overcomes resistance to ERBB inhibition. Cancer Biology and Therapy, 2019, 20, 597-607.	3.4	9

#	Article	IF	CITATIONS
37	Kinase inhibitors: look beyond the label on the bottle. , 2019, 2, 1032-1043.		0
38	The levels of mutant K-RAS and mutant N-RAS are rapidly reduced in a Beclin1 / ATG5 -dependent fashion by the irreversible ERBB1/2/4 inhibitor neratinib. Cancer Biology and Therapy, 2018, 19, 132-137.	3.4	32
39	The irreversible ERBB1/2/4 inhibitor neratinib interacts with the BCL-2 inhibitor venetoclax to kill mammary cancer cells. Cancer Biology and Therapy, 2018, 19, 239-247.	3.4	7
40	The irreversible ERBB1/2/4 inhibitor neratinib interacts with the PARP1 inhibitor niraparib to kill ovarian cancer cells. Cancer Biology and Therapy, 2018, 19, 525-533.	3.4	26
41	TP53 is required for BECN1- and ATG5-dependent cell death induced by sphingosine kinase 1 inhibition. Autophagy, 2018, 14, 1-16.	9.1	33
42	NEDD4 over-expression regulates the afatinib resistant phenotype of NSCLC cells. Oncology Signaling, 2018, 1, 19-30.	0.2	8
43	Unconventional Approaches to Modulating the Immunogenicity of Tumor Cells. Advances in Cancer Research, 2018, 137, 1-15.	5.0	9
44	The CHK1 inhibitor SRA737 synergizes with PARP1 inhibitors to kill carcinoma cells. Cancer Biology and Therapy, 2018, 19, 786-796.	3.4	23
45	Valproate augments Niraparib killing of tumor cells. Cancer Biology and Therapy, 2018, 19, 797-808.	3.4	10
46	[Neratinib + Valproate] exposure permanently reduces ERBB1 and RAS expression in 4T1 mammary tumors and enhances M1 macrophage infiltration. Oncotarget, 2018, 9, 6062-6074.	1.8	23
47	[pemetrexed + sildenafil], via autophagy-dependent HDAC downregulation, enhances the immunotherapy response of NSCLC cells. Cancer Biology and Therapy, 2017, 18, 705-714.	3.4	41
48	PDE5 inhibitors enhance the lethality of pemetrexed through inhibition of multiple chaperone proteins and via the actions of cyclic GMP and nitric oxide. Oncotarget, 2017, 8, 1449-1468.	1.8	41
49	PDE5 inhibitors enhance the lethality of [pemetrexed + sorafenib]. Oncotarget, 2017, 8, 13464-13475.	1.8	11
50	The HDAC inhibitor AR42 interacts with pazopanib to kill trametinib/dabrafenib-resistant melanoma cells <i>>in vitro</i> > and <i>>in vivo</i> >. Oncotarget, 2017, 8, 16367-16386.	1.8	55
51	HDAC inhibitors enhance the immunotherapy response of melanoma cells. Oncotarget, 2017, 8, 83155-83170.	1.8	108
52	HDAC inhibitors enhance neratinib activity and when combined enhance the actions of an anti-PD-1 immunomodulatory antibody <i>in vivo</i> . Oncotarget, 2017, 8, 90262-90277.	1.8	57
53	Repurposing Tecfidera for cancer. Aging, 2016, 8, 1289-1290.	3.1	8
54	Rationally Repurposing Ruxolitinib (Jakafi®) as a Solid Tumor Therapeutic. Frontiers in Oncology, 2016, 6, 142.	2.8	45

#	Article	IF	CITATIONS
55	AR-12 Inhibits Chaperone Proteins Preventing Virus Replication and the Accumulation of Toxic Misfolded Proteins. Journal of Clinical & Cellular Immunology, 2016, 7, .	1.5	7
56	Sildenafil (Viagra) sensitizes prostate cancer cells to doxorubicin-mediated apoptosis through CD95. Oncotarget, 2016, 7, 4399-4413.	1.8	40
57	ARâ€12 Inhibits Multiple Chaperones Concomitant With Stimulating Autophagosome Formation Collectively Preventing Virus Replication. Journal of Cellular Physiology, 2016, 231, 2286-2302.	4.1	38
58	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
59	Multi-kinase inhibitors can associate with heat shock proteins through their NH2-termini by which they suppress chaperone function. Oncotarget, 2016, 7, 12975-12996.	1.8	44
60	The afatinib resistance of <i>in vivo</i> generated H1975 lung cancer cell clones is mediated by SRC/ERBB3/c-KIT/c-MET compensatory survival signaling. Oncotarget, 2016, 7, 19620-19630.	1.8	43
61	Ruxolitinib synergizes with DMF to kill via BIM+BAD-induced mitochondrial dysfunction and via reduced SOD2/TRX expression and ROS. Oncotarget, 2016, 7, 17290-17300.	1.8	18
62	[Pemetrexed + Sorafenib] lethality is increased by inhibition of ERBB1/2/3-PI3K-NFκB compensatory survival signaling. Oncotarget, 2016, 7, 23608-23632.	1.8	27
63	Multi-kinase inhibitors interact with sildenafil and ERBB1/2/4 inhibitors to kill tumor cells <i>in vitro</i> and <i>in vivo</i> . Oncotarget, 2016, 7, 40398-40417.	1.8	23
64	GRP78/Dna K Is a Target for Nexavar/Stivarga/Votrient in the Treatment of Human Malignancies, Viral Infections and Bacterial Diseases. Journal of Cellular Physiology, 2015, 230, 2552-2578.	4.1	51
65	GRP78/BiP/HSPA5/Dna K is a universal therapeutic target for human disease. Journal of Cellular Physiology, 2015, 230, 1661-1676.	4.1	79
66	Reversing Translational Suppression and Induction of Toxicity in Pancreatic Cancer Cells Using a Chemoprevention Gene Therapy Approach. Molecular Pharmacology, 2015, 87, 286-295.	2.3	8
67	Targeted Inhibition of Phosphoinositide 3-Kinase/Mammalian Target of Rapamycin Sensitizes Pancreatic Cancer Cells to Doxorubicin without Exacerbating Cardiac Toxicity. Molecular Pharmacology, 2015, 88, 512-523.	2.3	12
68	Nexavar/Stivarga and Viagra Interact to Kill Tumor Cells. Journal of Cellular Physiology, 2015, 230, 2281-2298.	4.1	44
69	Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: the challenge ahead. Carcinogenesis, 2015, 36, S254-S296.	2.8	239
70	Mechanisms of environmental chemicals that enable the cancer hallmark of evasion of growth suppression. Carcinogenesis, 2015, 36, S2-S18.	2.8	55
71	OSUâ€03012 and Viagra Treatment Inhibits the Activity of Multiple Chaperone Proteins and Disrupts the Blood–Brain Barrier: Implications for Antiâ€Cancer Therapies. Journal of Cellular Physiology, 2015, 230, 1982-1998.	4.1	42
72	Differential regulation of autophagy and cell viability by ceramide species. Cancer Biology and Therapy, 2015, 16, 733-742.	3.4	21

#	Article	IF	CITATIONS
73	Celecoxib enhances [sorafenib + sildenafil] lethality in cancer cells and reverts platinum chemotherapy resistance. Cancer Biology and Therapy, 2015, 16, 1660-1670.	3.4	20
74	Not so WEE. Cancer Biology and Therapy, 2014, 15, 351-352.	3.4	1
75	New methods to control neuroblastoma growth. Cancer Biology and Therapy, 2014, 15, 481-482.	3.4	5
76	Pazopanib and HDAC inhibitors interact to kill sarcoma cells. Cancer Biology and Therapy, 2014, 15, 578-585.	3.4	42
77	Met in lung cancer. Cancer Biology and Therapy, 2014, 15, 653-654.	3.4	2
78	PDE5 inhibitors enhance the lethality of standard of care chemotherapy in pediatric CNS tumor cells. Cancer Biology and Therapy, 2014, 15, 758-767.	3.4	48
79	Crosstalk between ERK, AKT, and cell survival. Cancer Biology and Therapy, 2014, 15, 245-246.	3.4	82
80	The role of cell signalling in the crosstalk between autophagy and apoptosis. Cellular Signalling, 2014, 26, 549-555.	3.6	297
81	Phosphodiesterase 5 Inhibitors Enhance Chemotherapy Killing in Gastrointestinal/Genitourinary Cancer Cells. Molecular Pharmacology, 2014, 85, 408-419.	2.3	69
82	Regulation of OSU-03012 Toxicity by ER Stress Proteins and ER Stress–Inducing Drugs. Molecular Cancer Therapeutics, 2014, 13, 2384-2398.	4.1	42
83	Non-canonical p53 signaling to promote invasion. Cancer Biology and Therapy, 2013, 14, 879-880.	3.4	6
84	PARP and CHK inhibitors interact to cause DNA damage and cell death in mammary carcinoma cells. Cancer Biology and Therapy, 2013, 14, 458-465.	3.4	53
85	Poly(ADP-ribose) Polymerase 1 Modulates the Lethality of CHK1 Inhibitors in Mammary Tumors. Molecular Pharmacology, 2012, 82, 322-332.	2.3	31
86	Sorafenib and HDAC inhibitors synergize to kill CNS tumor cells. Cancer Biology and Therapy, 2012, 13, 567-574.	3.4	22
87	OSU-03012 suppresses GRP78/BiP expression that causes PERK-dependent increases in tumor cell killing. Cancer Biology and Therapy, 2012, 13, 224-236.	3.4	45
88	Cytokinetically quiescent (GO/G1) human multiple myeloma cells are susceptible to simultaneous inhibition of Chk1 and MEK1/2. Blood, 2011, 118, 5189-5200.	1.4	42
89	Sorafenib Enhances Pemetrexed Cytotoxicity through an Autophagy-Dependent Mechanism in Cancer Cells. Cancer Research, 2011, 71, 4955-4967.	0.9	89
90	CHK1 Inhibitors in Combination Chemotherapy: Thinking Beyond the Cell Cycle. Molecular Interventions: Pharmacological Perspectives From Biology, Chemistry and Genomics, 2011, 11, 133-140.	3.4	82

#	Article	IF	CITATIONS
91	The development of MDA-7/IL-24 as a cancer therapeutic. , 2010, 128, 375-384.		54
92	Sorafenib Activates CD95 and Promotes Autophagy and Cell Death via Src Family Kinases in Gastrointestinal Tumor Cells. Molecular Cancer Therapeutics, 2010, 9, 2220-2231.	4.1	79
93	Vorinostat and Sorafenib Increase CD95 Activation in Gastrointestinal Tumor Cells through a Ca2+- <i>De novo</i> Ceramide-PP2A-Reactive Oxygen Species–Dependent Signaling Pathway. Cancer Research, 2010, 70, 6313-6324.	0.9	95
94	Histone Deacetylase Inhibitors Activate NF-κB in Human Leukemia Cells through an ATM/NEMO-related Pathway. Journal of Biological Chemistry, 2010, 285, 10064-10077.	3.4	57
95	Poly(ADP-Ribose) Polymerase 1 Modulates the Lethality of CHK1 Inhibitors in Carcinoma Cells. Molecular Pharmacology, 2010, 78, 909-917.	2.3	33
96	Inhibition of MCL-1 in breast cancer cells promotes cell death in vitro and in vivo. Cancer Biology and Therapy, 2010, 10, 903-917.	3.4	72
97	Minting a new class of Polo-like-kinase inhibitors. Cancer Biology and Therapy, 2009, 8, 2384-2385.	3.4	0
98	PI3K: a rational target for ovarian cancer therapy?. Cancer Biology and Therapy, 2009, 8, 27-30.	3.4	7
99	BCL-2 Family Inhibitors Enhance Histone Deacetylase Inhibitor and Sorafenib Lethality via Autophagy and Overcome Blockade of the Extrinsic Pathway to Facilitate Killing. Molecular Pharmacology, 2009, 76, 327-341.	2.3	82
100	Mutations in the Phosphatidylinositol-3-Kinase Pathway Predict for Antitumor Activity of the Inhibitor PX-866 whereas Oncogenic Ras Is a Dominant Predictor for Resistance. Cancer Research, 2009, 69, 143-150.	0.9	273
101	Sorafenib and Vorinostat Kill Colon Cancer Cells by CD95-Dependent and -Independent Mechanisms. Molecular Pharmacology, 2009, 76, 342-355.	2.3	81
102	Synergistic combinations of signaling pathway inhibitors: Mechanisms for improved cancer therapy. Drug Resistance Updates, 2009, 12, 65-73.	14.4	45
103	Targeting CDK9 Dramatically Potentiates ABT-737-Induced Apoptosis in Human Multiple Myeloma Cells through a Bim-Dependent Mechanism Blood, 2009, 114, 297-297.	1.4	3
104	Human chorionic gonadotropin (hCG) interacts with lovastatin and ionizing radiation to modulate prostate cancer cell viability in vivo. Cancer Biology and Therapy, 2008, 7, 587-593.	3.4	3
105	Searching for a cure: Gene therapy for glioblastoma. Cancer Biology and Therapy, 2008, 7, 1335-1340.	3.4	19
106	Transient exposure of carcinoma cells to RAS/MEK inhibitors and UCN-01 causes cell death <i>in vitro</i> and <i>in vivo</i> . Molecular Cancer Therapeutics, 2008, 7, 616-629.	4.1	18
107	Vorinostat and Sorafenib Synergistically Kill Tumor Cells via FLIP Suppression and CD95 Activation. Clinical Cancer Research, 2008, 14, 5385-5399.	7.0	99
108	Vorinostat and sorafenib increase ER stress, autophagy and apoptosis via ceramide-dependent CD95 and PERK activation. Cancer Biology and Therapy, 2008, 7, 1648-1662.	3.4	159

#	Article	IF	CITATIONS
109	The Multikinase Inhibitor Sorafenib Induces Apoptosis in Highly Imatinib Mesylate-Resistant Bcr/Abl+Human Leukemia Cells in Association with Signal Transducer and Activator of Transcription 5 Inhibition and Myeloid Cell Leukemia-1 Down-Regulation. Molecular Pharmacology, 2007, 72, 788-795.	2.3	61
110	Human Chorionic Gonadotropin Modulates Prostate Cancer Cell Survival after Irradiation or HMG CoA Reductase Inhibitor Treatment. Molecular Pharmacology, 2007, 71, 259-275.	2.3	8
111	Extrinsic pathway- and cathepsin-dependent induction of mitochondrial dysfunction are essential for synergistic flavopiridol and vorinostat lethality in breast cancer cells. Molecular Cancer Therapeutics, 2007, 6, 3101-3112.	4.1	33
112	The Kinase Inhibitor Sorafenib Induces Cell Death through a Process Involving Induction of Endoplasmic Reticulum Stress. Molecular and Cellular Biology, 2007, 27, 5499-5513.	2.3	209
113	Radiation-induced cell signaling: inside-out and outside-in. Molecular Cancer Therapeutics, 2007, 6, 789-801.	4.1	313
114	Vorinostat Synergistically Potentiates MK-0457 Lethality in Chronic Myelogenous Leukemia (CML) Cells Sensitive and Resistant to Imatinib Mesylate Blood, 2007, 110, 1041-1041.	1.4	3
115	Approaches for Monitoring Signal Transduction Changes in Normal and Cancer Cells. , 2007, 383, 259-276.		0
116	Dissecting the Roles of Checkpoint Kinase 1/CDC2 and Mitogen-Activated Protein Kinase Kinase 1/2/Extracellular Signal-Regulated Kinase 1/2 in Relation to 7-Hydroxystaurosporine-Induced Apoptosis in Human Multiple Myeloma Cells. Molecular Pharmacology, 2006, 70, 1965-1973.	2.3	12
117	OSU-03012 Promotes Caspase-Independent but PERK-, Cathepsin B-, BID-, and AIF-Dependent Killing of Transformed Cells. Molecular Pharmacology, 2006, 70, 589-603.	2.3	80
118	Farnesyltransferase inhibitors interact synergistically with the Chk1 inhibitor UCN-01 to induce apoptosis in human leukemia cells through interruption of both Akt and MEK/ERK pathways and activation of SEK1/JNK. Blood, 2005, 105, 1706-1716.	1.4	65
119	Inhibition of insulin/IGF-1 receptor signaling enhances bile acid toxicity in primary hepatocytes. Biochemical Pharmacology, 2005, 70, 1685-1696.	4.4	20
120	MDA-7/IL-24 regulates proliferation, invasion and tumor cell radiosensitivity: A new cancer therapy?. Journal of Cellular Biochemistry, 2005, 95, 712-719.	2.6	21
121	Conjugated bile acids promote ERK1/2 and AKT activation via a pertussis toxin-sensitive mechanism in murine and human hepatocytes. Hepatology, 2005, 42, 1291-1299.	7.3	115
122	Radiation-Stimulated ERK1/2 and JNK1/2 Signaling can Promote Cell Cycle Progression in Human Colon Cancer Cells. Cell Cycle, 2005, 4, 456-464.	2.6	21
123	DMC: Novel celecoxib derivatives to rap cancer. Cancer Biology and Therapy, 2005, 4, 583-584.	3.4	2
124	Transient exposure of mammary tumors to PD184352 and UCN-01 causes tumor cell death in vivo and prolonged suppression of tumor re-growth. Cancer Biology and Therapy, 2005, 4, 1275-1284.	3.4	20
125	Characterization of Cdk955 and differential regulation of two Cdk9 isoforms. Gene, 2005, 350, 51-58.	2.2	56
126	H-RAS V12-induced radioresistance in HCT116 colon carcinoma cells is heregulin dependent. Molecular Cancer Therapeutics, 2005, 4, 243-55.	4.1	17

#	Article	IF	CITATIONS
127	Activated forms of H-RAS and K-RAS differentially regulate membrane association of PI3K, PDK-1, and AKT and the effect of therapeutic kinase inhibitors on cell survival. Molecular Cancer Therapeutics, 2005, 4, 257-70.	4.1	58
128	Ionizing Radiation Causes a Dose-Dependent Release of Transforming Growth Factor α In vitro from Irradiated Xenografts and during Palliative Treatment of Hormone-Refractory Prostate Carcinoma. Clinical Cancer Research, 2004, 10, 5724-5731.	7.0	60
129	Irofulven: Resurgence for alkylating therapy in cancer?. Cancer Biology and Therapy, 2004, 3, 1143-1144.	3.4	4
130	Co-Administration of SAHA and 17-AAG Synergistically Induces Apoptosis in Bcr-Abl+ Cells Sensitive and Resistant to STI-571 in Association with Down-Regulation of Bcr-Abl, Abrogation of STAT5 Activity, and Bax Conformational Change Blood, 2004, 104, 1995-1995.	1.4	9
131	MAPK pathways in radiation responses. Oncogene, 2003, 22, 5885-5896.	5.9	529
132	Stress and Radiation-Induced Activation of Multiple Intracellular Signaling Pathways1. Radiation Research, 2003, 159, 283-300.	1.5	437
133	The Regulation of Tumor Suppressor Genes by Oncogenes. , 2003, 222, 269-292.		2
134	Inhibitors of MEK1/2 Interact with UCN-01 to Induce Apoptosis and Reduce Colony Formation in Mammary and Prostate Carcinoma Cells. Cancer Biology and Therapy, 2002, 1, 243-253.	3.4	45
135	Ribonucleotide Reductase Inhibition: Regulation of the Radiosensitive Phenotype via NFkB and Bcl-2. Cancer Biology and Therapy, 2002, 1, 546-547.	3.4	2
136	lonizing radiation activates Erb-B receptor dependent Akt and p70 S6 kinase signaling in carcinoma cells. Oncogene, 2002, 21, 4032-4041.	5.9	156
137	Hepatitis B virus X protein increases expression of p21Cip-1/WAF1/MDA6 and p27Kip-1 in primary mouse hepatocytes, leading to reduced cell cycle progression. Hepatology, 2001, 34, 906-917.	7.3	59
138	Ionizing radiation modulates vascular endothelial growth factor (VEGF) expression through multiple mitogen activated protein kinase dependent pathways. Oncogene, 2001, 20, 3266-3280.	5.9	121
139	Deoxycholic Acid (DCA) Causes Ligand-independent Activation of Epidermal Growth Factor Receptor (EGFR) and FAS Receptor in Primary Hepatocytes: Inhibition of EGFR/Mitogen-activated Protein Kinase-Signaling Module Enhances DCA-induced Apoptosis. Molecular Biology of the Cell, 2001, 12, 2629-2645.	2.1	218
140	AP-1 and C/EBP transcription factors contribute tomda-7 gene promoter activity during human melanoma differentiation. Journal of Cellular Physiology, 2000, 185, 36-46.	4.1	44
141	Regulation of mda-7 gene expression during human melanoma differentiation. Oncogene, 2000, 19, 1362-1368.	5.9	51
142	APâ€1 and C/EBP transcription factors contribute to mdaâ€7 gene promoter activity during human melanoma differentiation. Journal of Cellular Physiology, 2000, 185, 36-46.	4.1	1
143	Radiation-induced Release of Transforming Growth Factor α Activates the Epidermal Growth Factor Receptor and Mitogen-activated Protein Kinase Pathway in Carcinoma Cells, Leading to Increased Proliferation and Protection from Radiation-induced Cell Death. Molecular Biology of the Cell, 1999, 10. 2493-2506.	2.1	319
144	Dominant negative EGFR-CD533 and inhibition of MAPK modify JNK1 activation and enhance radiation toxicity of human mammary carcinoma cells. Oncogene, 1999, 18, 4756-4766.	5.9	133

#	Article	IF	CITATIONS
145	Molecular mechanisms of radiation-induced accelerated repopulation. Radiation Oncology Investigations, 1999, 7, 321-330.	0.9	95
146	Genetic Evidence That Stress-Activated p38 MAP Kinase Is Necessary but Not Sufficient for UV Activation of HIV Gene Expressionâ€. Biochemistry, 1999, 38, 13055-13062.	2.5	23
147	Molecular mechanisms of radiationâ€induced accelerated repopulation. Radiation Oncology Investigations, 1999, 7, 321-330.	0.9	2
148	Inhibition of the mitogen activated protein (MAP) kinase cascade potentiates cell killing by low dose ionizing radiation in A431 human squamous carcinoma cells. Oncogene, 1998, 16, 2787-2796.	5.9	146
149	α-Adrenergic inhibition of proliferation in HepG2 cells stably transfected with the α1B-adrenergic receptor through a p42MAPâ€^kinase/p21Cip1/WAF1-dependent pathway. FEBS Letters, 1998, 436, 131-138.	2.8	27
150	Effects of ethanol on mitogen-activated protein kinase and stress-activated protein kinase cascades in normal and regenerating liver. Biochemical Journal, 1998, 334, 669-676.	3.7	106
151	Prolonged activation of the mitogen-activated protein kinase pathway promotes DNA synthesis in primary hepatocytes from p21Cip-1/WAF1-null mice, but not in hepatocytes from p16INK4a-null mice. Biochemical Journal, 1998, 336, 551-560.	3.7	64
152	Positive and negative regulation of JNK1 by protein kinase C and p42MAP kinasein adult rat hepatocytes. FEBS Letters, 1997, 412, 9-14.	2.8	31
153	Coordinate Regulation of Stress- and Mitogen-Activated Protein Kinases in the Apoptotic Actions of Ceramide and Sphingosine. Molecular Pharmacology, 1997, 52, 935-947.	2.3	137
154	Association of Grb2 with Sos and Ras with Raf-1 upon gamma irradiation of breast cancer cells. Oncogene, 1997, 15, 53-61.	5.9	62
155	Activation of a protein tyrosine phosphatase and inactivation of Raf-1 by somatostatin. Biochemical Journal, 1996, 314, 401-404.	3.7	45
156	Activation of Raf by ionizing radiation. Nature, 1996, 382, 813-816.	27.8	162
157	Reversal of Raf-1 activation by purified and membrane-associated protein phosphatases. Science, 1995, 268, 1902-1906.	12.6	199
158	Ordered phosphorylation of p42mapkby MAP kinase kinase. FEBS Letters, 1992, 306, 17-22.	2.8	143
159	The molecular mechanism by which insulin stimulates glycogen synthesis in mammalian skeletal muscle. Nature, 1990, 348, 302-308.	27.8	548
160	Targetting of protein phosphatase 1 to the sarcoplasmic reticulum of rabbit skeletal muscle by a protein that is very similar or identical to the G subunit that directs the enzyme to glycogen. FEBS Journal, 1990, 189, 243-249.	0.2	69
161	Identification of three in vivo phosphorylation sites on the glycogen-binding subunit of protein phosphatase 1 from rabbit skeletal muscle, and their response to adrenaline. FEBS Letters, 1990, 259, 281-285.	2.8	45
162	Multisite phosphorylation of the glycogen-binding subunit of protein phosphatase-1G by cyclic AMP-dependent protein kinase and glycogen synthase kinase-3. FEBS Letters, 1989, 248, 67-72.	2.8	70

	P	PAUL DENT		
#	Article		IF	CITATIONS
163	Phase I study of pemetrexed with sorafenib in advanced solid tumors. Oncotarget, 0, 7, 42625-4263	8.	1.8	7