Christian Schöb

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9322710/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Improving intercropping: a synthesis of research in agronomy, plant physiology and ecology. New Phytologist, 2015, 206, 107-117.	7.3	805
2	A global metaâ€analysis of the relative extent of intraspecific trait variation in plant communities. Ecology Letters, 2015, 18, 1406-1419.	6.4	768
3	Facilitative plant interactions and climate simultaneously drive alpine plant diversity. Ecology Letters, 2014, 17, 193-202.	6.4	274
4	Variability in functional traits mediates plant interactions along stress gradients. Journal of Ecology, 2013, 101, 753-762.	4.0	177
5	Alpine cushion plants inhibit the loss of phylogenetic diversity in severe environments. Ecology Letters, 2013, 16, 478-486.	6.4	151
6	Foundation species influence traitâ€based community assembly. New Phytologist, 2012, 196, 824-834.	7.3	150
7	Partitioning net interactions among plants along altitudinal gradients to study community responses to climate change. Functional Ecology, 2014, 28, 75-86.	3.6	120
8	Facilitation and sustainable agriculture: a mechanistic approach to reconciling crop production and conservation. Functional Ecology, 2016, 30, 98-107.	3.6	97
9	Small-scale plant species distribution in snowbeds and its sensitivity to climate change. Plant Ecology, 2009, 200, 91-104.	1.6	80
10	A global analysis of bidirectional interactions in alpine plant communities shows facilitators experiencing strong reciprocal fitness costs. New Phytologist, 2014, 202, 95-105.	7.3	79
11	Direct and indirect interactions coâ€determine species composition in nurse plant systems. Oikos, 2013, 122, 1371-1379.	2.7	76
12	Intraspecific genetic diversity and composition modify speciesâ€level diversity–productivity relationships. New Phytologist, 2015, 205, 720-730.	7.3	71
13	Habitat filtering determines the functional niche occupancy of plant communities worldwide. Journal of Ecology, 2018, 106, 1001-1009.	4.0	66
14	Competition, facilitation and environmental severity shape the relationship between local and regional species richness in plant communities. Ecography, 2015, 38, 335-345.	4.5	64
15	Positive Effects of Crop Diversity on Productivity Driven by Changes in Soil Microbial Composition. Frontiers in Microbiology, 2021, 12, 660749.	3.5	59
16	Facilitation and biodiversity–ecosystem function relationships in crop production systems and their role in sustainable farming. Journal of Ecology, 2021, 109, 2054-2067.	4.0	58
17	Consequences of facilitation: one plant's benefit is another plant's cost. Functional Ecology, 2014, 28, 500-508.	3.6	55
18	The effects of foundation species on community assembly: a global study on alpine cushion plant communities. Ecology, 2015, 96, 2064-2069.	3.2	53

#	Article	IF	CITATIONS
19	Network motifs involving both competition and facilitation predict biodiversity in alpine plant communities. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	47
20	Resistance of plant–plant networks to biodiversity loss and secondary extinctions following simulated environmental changes. Functional Ecology, 2017, 31, 1145-1152.	3.6	46
21	The shift from plant–plant facilitation to competition under severe water deficit is spatially explicit. Ecology and Evolution, 2017, 7, 2441-2448.	1.9	45
22	Evolution of facilitation requires diverse communities. Nature Ecology and Evolution, 2018, 2, 1381-1385.	7.8	45
23	Cushion plants can have a positive effect on diversity at high elevations in the <scp>H</scp> imalayan <scp>H</scp> engduan <scp>M</scp> ountains. Journal of Vegetation Science, 2015, 26, 768-777.	2.2	39
24	Soil nutrient availability determines the facilitative effects of cushion plants on other plant species at high elevations in the south-eastern Himalayas. Plant Ecology and Diversity, 2015, 8, 199-210.	2.4	38
25	Beneficiary feedback effects on alpine cushion benefactors become more negative with increasing cover of graminoids and in dry conditions. Functional Ecology, 2016, 30, 79-87.	3.6	38
26	The context dependence of beneficiary feedback effects on benefactors in plant facilitation. New Phytologist, 2014, 204, 386-396.	7.3	37
27	Plant interactions shape pollination networks via nonadditive effects. Ecology, 2019, 100, e02619.	3.2	37
28	Increasing species richness on mountain summits: Upward migration due to anthropogenic climate change or reâ€colonisation?. Journal of Vegetation Science, 2007, 18, 301-306.	2.2	36
29	Active and adaptive plasticity in a changing climate. Trends in Plant Science, 2022, 27, 717-728.	8.8	35
30	Contribution of co-occurring shrub species to community richness and phylogenetic diversity along an environmental gradient. Perspectives in Plant Ecology, Evolution and Systematics, 2016, 19, 30-39.	2.7	34
31	Increasing water availability and facilitation weaken biodiversity–biomass relationships in shrublands. Ecology, 2019, 100, e02624.	3.2	34
32	The relationship between soil water storage capacity and plant species diversity in high alpine vegetation. Plant Ecology and Diversity, 2013, 6, 457-466.	2.4	30
33	Diversity increases yield but reduces harvest index in crop mixtures. Nature Plants, 2021, 7, 893-898.	9.3	30
34	Legume Shrubs Are More Nitrogen-Homeostatic than Non-legume Shrubs. Frontiers in Plant Science, 2017, 8, 1662.	3.6	29
35	A traitâ€based approach to understand the consequences of specific plant interactions for community structure. Journal of Vegetation Science, 2017, 28, 696-704.	2.2	25
36	Plant domestication disrupts biodiversity effects across major crop types. Ecology Letters, 2019, 22, 1472-1482.	6.4	25

#	Article	IF	CITATIONS
37	Crop–weed relationships are contextâ€dependent and cannot fully explain the positive effects of intercropping on yield. Ecological Applications, 2021, 31, e02311.	3.8	24
38	Combining observational and experimental methods in plant–plant interaction research. Plant Ecology and Diversity, 2012, 5, 27-36.	2.4	23
39	The assembly of a plant network in alpine vegetation. Journal of Vegetation Science, 2018, 29, 999-1006.	2.2	20
40	Counterbalancing effects of competition for resources and facilitation against grazing in alpine snowbed communities. Oikos, 2010, 119, 1571-1580.	2.7	19
41	The balance of canopy and soil effects determines intraspecific differences in foundation species' effects on associated plants. Functional Ecology, 2018, 32, 2253-2263.	3.6	19
42	A trait-based approach to crop–weed interactions. European Journal of Agronomy, 2015, 70, 22-32.	4.1	18
43	Feedback effects between plant and flower-visiting insect communities along a primary succession gradient. Arthropod-Plant Interactions, 2016, 10, 485-495.	1.1	18
44	Shrub facilitation promotes selective tree establishment beyond the climatic treeline. Science of the Total Environment, 2020, 708, 134618.	8.0	18
45	Temporal Differentiation of Resource Capture and Biomass Accumulation as a Driver of Yield Increase in Intercropping. Frontiers in Plant Science, 2021, 12, 668803.	3.6	18
46	Phylogenetic distance among beneficiary species in a cushion plant species explains interaction outcome. Oikos, 2015, 124, 1354-1359.	2.7	17
47	An experimental approach to assessing the impact of ecosystem engineers on biodiversity and ecosystem functions. Ecology, 2021, 102, e03243.	3.2	17
48	Size-Mediated Interaction between a Cushion Species and Other Non-cushion Species at High Elevations of the Hengduan Mountains, SW China. Frontiers in Plant Science, 2017, 08, 465.	3.6	16
49	Plant life history stage and nurse age change the development of ecological networks in an arid ecosystem. Oikos, 2018, 127, 1390-1397.	2.7	16
50	Facilitation and biodiversity jointly drive mutualistic networks. Journal of Ecology, 2021, 109, 2029-2037.	4.0	16
51	Modulating effects of ontogeny on the outcome of plant–plant interactions along stress gradients. New Phytologist, 2013, 200, 7-9.	7.3	15
52	How cushion communities are maintained in alpine ecosystems: A review and case study on alpine cushion plant reproduction. Plant Diversity, 2017, 39, 221-228.	3.7	15
53	Environmental Objectives of Spanish Agriculture: Scientific Guidelines for their Effective Implementation under the Common Agricultural Policy 2023-2030. Ardeola, 2021, 68, .	0.7	15
54	Positive plant–plant interactions expand the upper distributional limits of some vascular plant species. Ecosphere, 2019, 10, e02820.	2.2	14

#	Article	IF	CITATIONS
55	Increased crop diversity reduces the functional space available for weeds. Weed Research, 2020, 60, 121-131.	1.7	13
56	Warming enhances growth but does not affect plant interactions in an alpine cushion species. Perspectives in Plant Ecology, Evolution and Systematics, 2020, 44, 125530.	2.7	13
57	Facilitation and plant phenotypic evolution. Trends in Plant Science, 2021, 26, 913-923.	8.8	13
58	Using plant traits to understand the contribution of biodiversity effects to annual crop community productivity. Ecological Applications, 2022, 32, e02479.	3.8	13
59	Seasonal comparison of bacterial communities in rhizosphere of alpine cushion plants in the Himalayan Hengduan Mountains. Plant Diversity, 2018, 40, 209-216.	3.7	12
60	Foundation species promote local adaptation and fineâ€scale distribution of herbaceous plants. Journal of Ecology, 2021, 109, 191-203.	4.0	12
61	Changes in species composition in alpine snowbeds with climate change inferred from small-scale spatial patterns. Web Ecology, 2008, 8, 142-159.	1.6	12
62	Shrub facilitation drives tree establishment in a semiarid fogâ€dependent ecosystem. Applied Vegetation Science, 2018, 21, 113-120.	1.9	10
63	Pollination interactions reveal direct costs and indirect benefits of plant–plant facilitation for ecosystem engineers. Journal of Plant Ecology, 2020, 13, 107-113.	2.3	10
64	Facilitation by a dwarf shrub enhances plant diversity of human-valued species at high elevations in the Himalayas of Nepal. Basic and Applied Ecology, 2021, 54, 23-36.	2.7	10
65	Moderate shading did not affect barley yield in temperate silvoarable agroforestry systems. Agroforestry Systems, 2022, 96, 799-810.	2.0	10
66	Predicting population and community dynamics: The type of aggregation matters. Basic and Applied Ecology, 2010, 11, 563-571.	2.7	8
67	Alpine speciation and morphological innovations: revelations from a species-rich genus in the northern hemisphere. AoB PLANTS, 2021, 13, plab018.	2.3	8
68	Temporal dynamics of biodiversity effects and lightâ€useâ€related traits in two intercropping systems. , 2022, 1, 54-65.		8
69	Interspecific facilitation mediates the outcome of intraspecific interactions across an elevational gradient. Ecology, 2021, 102, e03200.	3.2	7
70	Increasing species richness on mountain summits: Upward migration due to anthropogenic climate change or re-colonisation?. Journal of Vegetation Science, 2007, 18, 301.	2.2	7
71	Species interactions involving cushion plants in high-elevation environments under a changing climate. Ecosistemas, 2021, 30, 2186.	0.4	6
72	Arabis alpina and Arabidopsis thaliana have different stomatal development strategies in response to high altitude pressure conditions. Alpine Botany, 2015, 125, 101-112.	2.4	5

#	Article	IF	CITATIONS
73	Species but not genotype diversity strongly impacts the establishment of rare colonisers. Functional Ecology, 2017, 31, 1462-1470.	3.6	5
74	The positive effects of the alpine cushion plant Arenaria polytrichoides on insect dynamics are determined by both physical and biotic factors. Science of the Total Environment, 2021, 762, 143091.	8.0	5
75	Does crop genetic diversity support positive biodiversity effects under experimental drought?. Basic and Applied Ecology, 2021, 56, 431-445.	2.7	5
76	Using spatially-explicit plant competition models to optimise crop productivity in intercropped systems. Basic and Applied Ecology, 2022, 63, 1-15.	2.7	5
77	Crop presence, but not genetic diversity, impacts on the rare arable plant <i>Valerianella rimosa</i> . Plant Ecology and Diversity, 2017, 10, 495-507.	2.4	3
78	Decreasing nitrogen deposition rates: Good news for oligotrophic grassland species?. Basic and Applied Ecology, 2022, 63, 125-138.	2.7	3
79	Effect of Drought on Bean Yield Is Mediated by Intraspecific Variation in Crop Mixtures. Frontiers in Plant Science, 2022, 13, 813417.	3.6	2
80	Seed quality of the Sino–Himalayan endemic genus Cyananthus (Campanulaceae) increases with elevation and varies with life histories. Plant Ecology and Diversity, 2017, 10, 43-52.	2.4	1
81	Shrubs mediate forest start-up and patch dynamics in a semiarid landscape. Perspectives in Plant Ecology, Evolution and Systematics, 2018, 34, 140-149.	2.7	1
82	Interâ€Specific Facilitation Mediates the Outcome of Intraâ€Specific Interactions Across an Elevational Gradient. Bulletin of the Ecological Society of America, 2021, 102, e01806.	0.2	0
83	Alpine community recruitment potential is determined by habitat attributes in the alpine ecosystems of the Himalayaâ€Hengduan Mountains, SW China. Ecology and Evolution, 2021, 11, 17397-17408.	1.9	Ο