Xiaoxia Nina Lin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9321826/publications.pdf

Version: 2024-02-01

567281 552781 1,510 27 15 26 citations h-index g-index papers 29 29 29 2312 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Design and characterization of synthetic fungal-bacterial consortia for direct production of isobutanol from cellulosic biomass. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 14592-14597.	7.1	391
2	Hydrothermal liquefaction of Nannochloropsis sp.: Systematic study of process variables and analysis of the product fractions. Biomass and Bioenergy, 2012, 46, 317-331.	5.7	301
3	Microdroplet-Enabled Highly Parallel Co-Cultivation of Microbial Communities. PLoS ONE, 2011, 6, e17019.	2.5	152
4	Isofunctional Enzymes PAD1 and UbiX Catalyze Formation of a Novel Cofactor Required by Ferulic Acid Decarboxylase and 4-Hydroxy-3-polyprenylbenzoic Acid Decarboxylase. ACS Chemical Biology, 2015, 10, 1137-1144.	3.4	83
5	A Programmable Escherichia coli Consortium via Tunable Symbiosis. PLoS ONE, 2012, 7, e34032.	2.5	81
6	High-Resolution Mapping of the Escherichia coli Chromosome Reveals Positions of High and Low Transcription. Cell Systems, 2019, 8, 212-225.e9.	6.2	79
7	Life Cycle Design of an Algal Biorefinery Featuring Hydrothermal Liquefaction: Effect of Reaction Conditions and an Alternative Pathway Including Microbial Regrowth. ACS Sustainable Chemistry and Engineering, 2014, 2, 867-874.	6.7	44
8	Syntrophic co-culture amplification of production phenotype for high-throughput screening of microbial strain libraries. Metabolic Engineering, 2019, 54, 232-243.	7.0	40
9	Aldehydeâ€forming fatty acylâ€∢scp>Co <scp>A</scp> reductase from cyanobacteria: expression, purification and characterization of the recombinant enzyme. FEBS Journal, 2013, 280, 4773-4781.	4.7	36
10	Individual <i>Microcystis</i> colonies harbour distinct bacterial communities that differ by <i>Microcystis</i> oligotype and with time. Environmental Microbiology, 2021, 23, 3020-3036.	3.8	36
11	Optimized gene expression from bacterial chromosome by high-throughput integration and screening. Science Advances, 2021, 7, .	10.3	35
12	Hydrothermal Liquefaction of Bacteria and Yeast Monocultures. Energy & Ener	5.1	34
13	Multisite Phosphorylation Provides an Effective and Flexible Mechanism for Switch-Like Protein Degradation. PLoS ONE, 2010, 5, e14029.	2.5	34
14	Production of cellulosic organic acids via synthetic fungal consortia. Biotechnology and Bioengineering, 2018, 115, 1096-1100.	3.3	29
15	Improving Fatty Acid Availability for Bio-Hydrocarbon Production in Escherichia coli by Metabolic Engineering. PLoS ONE, 2013, 8, e78595.	2.5	23
16	Biodiversity Improves Life Cycle Sustainability Metrics in Algal Biofuel Production. Environmental Science & Environmental Sci	10.0	17
17	Co-cultivation of microbial sub-communities in microfluidic droplets facilitates high-resolution genomic dissection of microbial †dark matterâ€. Integrative Biology (United Kingdom), 2020, 12, 263-274.	1.3	16
18	Demonstration of transgressive overyielding of algal mixed cultures in microdroplets. Integrative Biology (United Kingdom), 2017, 9, 687-694.	1.3	13

#	Article	IF	CITATIONS
19	Recent progress in hydrocarbon biofuel synthesis: Pathways and enzymes. Chinese Chemical Letters, 2015, 26, 431-434.	9.0	11
20	Microdroplet co-cultivation and interaction characterization of human vaginal bacteria. Integrative Biology (United Kingdom), 2019, 11, 69-78.	1.3	11
21	Temperature regulation as a tool to program synthetic microbial community composition. Biotechnology and Bioengineering, 2021, 118, 1381-1392.	3.3	9
22	Bead mediated separation of microparticles in droplets. PLoS ONE, 2017, 12, e0173479.	2.5	8
23	Random Chromosomal Integration and Screening Yields <i>E.Âcoli</i> K-12 Derivatives Capable of Efficient Sucrose Utilization. ACS Synthetic Biology, 2020, 9, 3311-3321.	3.8	7
24	Network Benchmarking: A Happy Marriage between Systems and Synthetic Biology. Chemistry and Biology, 2009, 16, 239-241.	6.0	5
25	Engineering Synthetic Microbial Consortia for Consolidated Bioprocessing of Ligonocellulosic Biomass into Valuable Fuels and Chemicals. , 2015, , 365-381.		5
26	The effect of droplet size on syntrophic dynamics in droplet-enabled microbial co-cultivation. PLoS ONE, 2022, 17, e0266282.	2.5	5
27	Dissecting the Ecology of Microbes Using a Systems Toolbox. Cell Systems, 2017, 5, 442-444.	6.2	2