
Samir El-Andaloussi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9321114/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of Extracellular Vesicles, 2018, 7, 1535750.	5.5	6,961
2	Extracellular vesicles: biology and emerging therapeutic opportunities. Nature Reviews Drug Discovery, 2013, 12, 347-357.	21.5	2,563
3	Extracellular vesicle in vivo biodistribution is determined by cell source, route of administration and targeting. Journal of Extracellular Vesicles, 2015, 4, 26316.	5.5	1,077
4	Applying extracellular vesicles based therapeutics in clinical trials – an ISEV position paper. Journal of Extracellular Vesicles, 2015, 4, 30087.	5.5	1,020
5	Cells release subpopulations of exosomes with distinct molecular and biological properties. Scientific Reports, 2016, 6, 22519.	1.6	728
6	Methodological Guidelines to Study Extracellular Vesicles. Circulation Research, 2017, 120, 1632-1648.	2.0	728
7	Extracellular vesicles as drug delivery systems: Why and how?. Advanced Drug Delivery Reviews, 2020, 159, 332-343.	6.6	606
8	Advances in therapeutic applications of extracellular vesicles. Science Translational Medicine, 2019, 11, .	5.8	595
9	Isolation of Exosomes from Blood Plasma: Qualitative and Quantitative Comparison of Ultracentrifugation and Size Exclusion Chromatography Methods. PLoS ONE, 2015, 10, e0145686.	1.1	493
10	Ultrafiltration with size-exclusion liquid chromatography for high yield isolation of extracellular vesicles preserving intact biophysical and functional properties. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 879-883.	1.7	487
11	Exosome-mediated delivery of siRNA in vitro and in vivo. Nature Protocols, 2012, 7, 2112-2126.	5.5	484
12	Exosomes for targeted siRNA delivery across biological barriers. Advanced Drug Delivery Reviews, 2013, 65, 391-397.	6.6	430
13	Comprehensive Proteomic Analysis of Mesenchymal Stem Cell Exosomes Reveals Modulation of Angiogenesis via Nuclear Factor-KappaB Signaling. Stem Cells, 2016, 34, 601-613.	1.4	407
14	Evidence-Based Clinical Use of Nanoscale Extracellular Vesicles in Nanomedicine. ACS Nano, 2016, 10, 3886-3899.	7.3	397
15	Systemic exosomal siRNA delivery reduced alpha-synuclein aggregates in brains of transgenic mice. Movement Disorders, 2014, 29, 1476-1485.	2.2	384
16	Exosomes surf on filopodia to enter cells at endocytic hot spots, traffic within endosomes, and are targeted to the ER. Journal of Cell Biology, 2016, 213, 173-184.	2.3	326
17	Extracellular vesicles in neurodegenerative disease — pathogenesis to biomarkers. Nature Reviews Neurology, 2016, 12, 346-357.	4.9	299
18	Functional correction in mouse models of muscular dystrophy using exon-skipping tricyclo-DNA oligomers. Nature Medicine, 2015, 21, 270-275.	15.2	263

SAMIR EL-ANDALOUSSI

#	Article	IF	CITATIONS
19	Design of a peptide-based vector, PepFect6, for efficient delivery of siRNA in cell culture and systemically in vivo. Nucleic Acids Research, 2011, 39, 3972-3987.	6.5	262
20	Optimisation of imaging flow cytometry for the analysis of single extracellular vesicles by using fluorescenceâ€ŧagged vesicles as biological reference material. Journal of Extracellular Vesicles, 2019, 8, 1587567.	5.5	224
21	Cargo-dependent cytotoxicity and delivery efficacy of cell-penetrating peptides: a comparative study. Biochemical Journal, 2007, 407, 285-292.	1.7	217
22	PepFect 14, a novel cell-penetrating peptide for oligonucleotide delivery in solution and as solid formulation. Nucleic Acids Research, 2011, 39, 5284-5298.	6.5	199
23	Peptides for nucleic acid delivery. Advanced Drug Delivery Reviews, 2016, 106, 172-182.	6.6	174
24	Reproducible and scalable purification of extracellular vesicles using combined bind-elute and size exclusion chromatography. Scientific Reports, 2017, 7, 11561.	1.6	168
25	Systematic Methodological Evaluation of a Multiplex Bead-Based Flow Cytometry Assay for Detection of Extracellular Vesicle Surface Signatures. Frontiers in Immunology, 2018, 9, 1326.	2.2	168
26	A stearylated CPP for delivery of splice correcting oligonucleotides using a non-covalent co-incubation strategy. Journal of Controlled Release, 2009, 134, 221-227.	4.8	163
27	The power of imaging to understand extracellular vesicle biology in vivo. Nature Methods, 2021, 18, 1013-1026.	9.0	163
28	The viral protein corona directs viral pathogenesis and amyloid aggregation. Nature Communications, 2019, 10, 2331.	5.8	160
29	Therapeutic Potential of Multipotent Mesenchymal Stromal Cells and Their Extracellular Vesicles. Human Gene Therapy, 2015, 26, 506-517.	1.4	148
30	Functional Delivery of Lipid-Conjugated siRNA by Extracellular Vesicles. Molecular Therapy, 2017, 25, 1580-1587.	3.7	145
31	Exosome-like vesicles released from lipid-induced insulin-resistant muscles modulate gene expression and proliferation of beta recipient cells in mice. Diabetologia, 2016, 59, 1049-1058.	2.9	144
32	Dosing extracellular vesicles. Advanced Drug Delivery Reviews, 2021, 178, 113961.	6.6	134
33	In Vivo Effects of Mesenchymal Stromal Cells in Two Patients With Severe Acute Respiratory Distress Syndrome. Stem Cells Translational Medicine, 2015, 4, 1199-1213.	1.6	131
34	Serumâ€free culture alters the quantity and protein composition of neuroblastomaâ€derived extracellular vesicles. Journal of Extracellular Vesicles, 2015, 4, 26883.	5.5	131
35	Scavenger receptorâ€mediated uptake of cellâ€penetrating peptide nanocomplexes with oligonucleotides. FASEB Journal, 2012, 26, 1172-1180.	0.2	127
36	C9orf72 and RAB7L1 regulate vesicle trafficking in amyotrophic lateral sclerosis and frontotemporal dementia. Brain, 2017, 140, 887-897.	3.7	126

SAMIR EL-ANDALOUSSI

#	Article	IF	CITATIONS
37	Induction of splice correction by cell-penetrating peptide nucleic acids. Journal of Gene Medicine, 2006, 8, 1262-1273.	1.4	120
38	Delivery is key: lessons learnt from developing spliceâ€switching antisense therapies. EMBO Molecular Medicine, 2017, 9, 545-557.	3.3	119
39	Heterogeneity and interplay of the extracellular vesicle small RNA transcriptome and proteome. Scientific Reports, 2018, 8, 10813.	1.6	118
40	How much dystrophin is enough: the physiological consequences of different levels of dystrophin in the <i>mdx</i> mouse. Human Molecular Genetics, 2015, 24, 4225-4237.	1.4	116
41	Quantification of extracellular vesicles <i>in vitro</i> and <i>in vivo</i> using sensitive bioluminescence imaging. Journal of Extracellular Vesicles, 2020, 9, 1800222.	5.5	114
42	Circulating Exosomal miR-20b-5p Is Elevated in Type 2 Diabetes and Could Impair Insulin Action in Human Skeletal Muscle. Diabetes, 2019, 68, 515-526.	0.3	99
43	A CRISPR-Cas9-based reporter system for single-cell detection of extracellular vesicle-mediated functional transfer of RNA. Nature Communications, 2020, 11, 1113.	5.8	99
44	Systematic characterization of extracellular vesicle sorting domains and quantification at the single molecule – single vesicle level by fluorescence correlation spectroscopy and single particle imaging. Journal of Extracellular Vesicles, 2019, 8, 1663043.	5.5	96
45	A Peptide-based Vector for Efficient Gene Transfer In Vitro and In Vivo. Molecular Therapy, 2011, 19, 1457-1467.	3.7	94
46	Identification of storage conditions stabilizing extracellular vesicles preparations. Journal of Extracellular Vesicles, 2022, 11, .	5.5	91
47	Self-Assembly into Nanoparticles Is Essential for Receptor Mediated Uptake of Therapeutic Antisense Oligonucleotides. Nano Letters, 2015, 15, 4364-4373.	4.5	80
48	Delivery of Oligonucleotide Therapeutics: Chemical Modifications, Lipid Nanoparticles, and Extracellular Vesicles. ACS Nano, 2021, 15, 13993-14021.	7.3	74
49	High cerebrospinal amyloid-Î ² 42 is associated with normal cognition in individuals with brain amyloidosis. EClinicalMedicine, 2021, 38, 100988.	3.2	69
50	Use of Nanovesicles from Orange Juice to Reverse Diet-Induced Gut Modifications in Diet-Induced Obese Mice. Molecular Therapy - Methods and Clinical Development, 2020, 18, 880-892.	1.8	58
51	Label-Free Surface Protein Profiling of Extracellular Vesicles by an Electrokinetic Sensor. ACS Sensors, 2019, 4, 1399-1408.	4.0	54
52	Selective release of muscle-specific, extracellular microRNAs during myogenic differentiation. Human Molecular Genetics, 2016, 25, 3960-3974.	1.4	50
53	Multi-level omics analysis in a murine model of dystrophin loss and therapeutic restoration. Human Molecular Genetics, 2015, 24, 6756-6768.	1.4	42
54	GAPDH controls extracellular vesicle biogenesis and enhances the therapeutic potential of EV mediated siRNA delivery to the brain. Nature Communications, 2021, 12, 6666.	5.8	42

#	Article	IF	CITATIONS
55	Comprehensive RNA-Sequencing Analysis in Serum and Muscle Reveals Novel Small RNA Signatures with Biomarker Potential for DMD. Molecular Therapy - Nucleic Acids, 2018, 13, 1-15.	2.3	41
56	Amelioration of systemic inflammation via the display of two different decoy protein receptors on extracellular vesicles. Nature Biomedical Engineering, 2021, 5, 1084-1098.	11.6	41
57	Synthetic SiRNA Delivery: Progress and Prospects. Methods in Molecular Biology, 2016, 1364, 291-310.	0.4	39
58	Considerations and Implications in the Purification of Extracellular Vesicles – A Cautionary Tale. Frontiers in Neuroscience, 2019, 13, 1067.	1.4	39
59	Optimised Electroporation for Loading of Extracellular Vesicles with Doxorubicin. Pharmaceutics, 2022, 14, 38.	2.0	39
60	UFLCâ€Derived CSF Extracellular Vesicle Origin and Proteome. Proteomics, 2018, 18, e1800257.	1.3	36
61	Multiparametric Profiling of Single Nanoscale Extracellular Vesicles by Combined Atomic Force and Fluorescence Microscopy: Correlation and Heterogeneity in Their Molecular and Biophysical Features. Small, 2021, 17, e2008155.	5.2	31
62	<scp>Highâ€Resolution</scp> Imaging Flow Cytometry Reveals Impact of Incubation Temperature on Labeling of Extracellular Vesicles with Antibodies. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2020, 97, 602-609.	1.1	30
63	Targeting OGG1 arrests cancer cell proliferation by inducing replication stress. Nucleic Acids Research, 2020, 48, 12234-12251.	6.5	29
64	Micro-minicircle Gene Therapy: Implications of Size on Fermentation, Complexation, Shearing Resistance, and Expression. Molecular Therapy - Nucleic Acids, 2014, 3, e140.	2.3	28
65	Growth Media Conditions Influence the Secretion Route and Release Levels of Engineered Extracellular Vesicles. Advanced Healthcare Materials, 2022, 11, e2101658.	3.9	28
66	Engineered extracellular vesicle decoy receptor-mediated modulation of the IL6 trans-signalling pathway in muscle. Biomaterials, 2021, 266, 120435.	5.7	26
67	Efficient Peptide-Mediated In Vitro Delivery of Cas9 RNP. Pharmaceutics, 2021, 13, 878.	2.0	24
68	Salivary extracellular vesicles inhibit Zika virus but not SARS oVâ€⊋Âinfection. Journal of Extracellular Vesicles, 2020, 9, 1808281.	5.5	23
69	Functional extracellular vesicles aplenty. Nature Biomedical Engineering, 2020, 4, 9-11.	11.6	23
70	Phenotype-Agnostic Molecular Subtyping of Neurodegenerative Disorders: The Cincinnati Cohort Biomarker Program (CCBP). Frontiers in Aging Neuroscience, 2020, 12, 553635.	1.7	22
71	Disentangling the Amyloid Pathways: A Mechanistic Approach to Etiology. Frontiers in Neuroscience, 2020, 14, 256.	1.4	21
72	Extracellular vesicles are the primary source of bloodâ€borne tumourâ€derived mutant <i>KRAS</i> DNA early in pancreatic cancer. Journal of Extracellular Vesicles, 2021, 10, e12142.	5.5	21

#	Article	IF	CITATIONS
73	Human Amnion Epithelial Cells Impair T Cell Proliferation: The Role of HLA-G and HLA-E Molecules. Cells, 2020, 9, 2123.	1.8	19
74	Lipid-based Transfection Reagents Exhibit Cryo-induced Increase in Transfection Efficiency. Molecular Therapy - Nucleic Acids, 2016, 5, e290.	2.3	17
75	Novel peptide-dendrimer/lipid/oligonucleotide ternary complexes for efficient cellular uptake and improved splice-switching activity. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 132, 29-40.	2.0	17
76	Supramolecular Assembly of Aminoethylene‣ipopeptide PMO Conjugates into RNA Spliceâ€&witching Nanomicelles. Advanced Functional Materials, 2019, 29, 1906432.	7.8	14
77	Tangential Flow Filtration with or Without Subsequent Bind-Elute Size Exclusion Chromatography for Purification of Extracellular Vesicles. Methods in Molecular Biology, 2019, 1953, 287-299.	0.4	14
78	From Gut to Brain: Bioencapsulated Therapeutic Protein Reduces Amyloid Load Upon Oral Delivery. Molecular Therapy, 2014, 22, 485-486.	3.7	13
79	Four Novel Splice-Switch Reporter Cell Lines: Distinct Impact of Oligonucleotide Chemistry and Delivery Vector on Biological Activity. Nucleic Acid Therapeutics, 2016, 26, 381-391.	2.0	12
80	Single-Stranded Nucleic Acids Regulate TLR3/4/7 Activation through Interference with Clathrin-Mediated Endocytosis. Scientific Reports, 2018, 8, 15841.	1.6	12
81	Profiling of Extracellular Small RNAs Highlights a Strong Bias towards Non-Vesicular Secretion. Cells, 2021, 10, 1543.	1.8	11
82	Sugar and Polymer Excipients Enhance Uptake and Splice-Switching Activity of Peptide-Dendrimer/Lipid/Oligonucleotide Formulations. Pharmaceutics, 2019, 11, 666.	2.0	10
83	Diagnostic and Prognostic Utility of the Extracellular Vesicles Subpopulations Present in Pleural Effusion. Biomolecules, 2021, 11, 1606.	1.8	10
84	Translocation-generated ITK-FER and ITK-SYK fusions induce STAT3 phosphorylation and CD69 expression. Biochemical and Biophysical Research Communications, 2018, 504, 749-752.	1.0	8
85	Novel endosomolytic compounds enable highly potent delivery of antisense oligonucleotides. Communications Biology, 2022, 5, 185.	2.0	7
86	mRNA and microRNA transcriptomics analyses in a murine model of dystrophin loss and therapeutic restoration. Genomics Data, 2016, 7, 88-89.	1.3	6
87	Novel Orthogonally Hydrocarbon-Modified Cell-Penetrating Peptide Nanoparticles Mediate Efficient Delivery of Splice-Switching Antisense Oligonucleotides In Vitro and In Vivo. Biomedicines, 2021, 9, 1046.	1.4	6
88	Description and optimization of a multiplex bead-based flow cytometry method (MBFCM) to characterize extracellular vesicles in serum samples from patients with hematological malignancies. Cancer Gene Therapy, 2022, 29, 1600-1615.	2.2	6
89	The kidney injury caused by the onset of acute graft-versus-host disease is associated with down-regulation of αKlotho. International Immunopharmacology, 2020, 78, 106042.	1.7	5
90	Lipophilic Peptide Dendrimers for Delivery of Splice-Switching Oligonucleotides. Pharmaceutics, 2021, 13, 116.	2.0	5

#	Article	IF	CITATIONS
91	Smad‑binding decoy reduces extracellular matrix expression in human hypertrophic scar fibroblasts. Molecular Medicine Reports, 2020, 22, 4589-4600.	1.1	3
92	Circular RNA interference effector molecules (WO10084371). Expert Opinion on Therapeutic Patents, 2011, 21, 115-119.	2.4	2
93	Isolation and Characterization of Extracellular Vesicles from Keratinocyte Cultures. Methods in Molecular Biology, 2019, 2109, 35-44.	0.4	1
94	Combination of Coordination and Releasable Covalent Binding for the Delivery of Antisense Therapeutics by Bisphosphonate-Hyaluronan-Oligonucleotide Conjugates. ACS Applied Polymer Materials, 2021, 3, 2197-2210.	2.0	1